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Several definitions of the “pressure” are introduced for one-component systems
and shown to be nonequivalent in the presence of a rigid neutralizing background.
Relations between these pressures are derived for finite and infinite systems; these
relations depend on the asymptotic behavior of the force at infinity, with the
Coulomb force at the borderline between different properties. It is argued that only
one of those definitions is physically acceptable and its properties are discussed in
relation to the asymptotic behavior of the force. It is seen in particular that a
knowledge of the state of the infinite system is not sufficient to determine its
thermodynamic properties. The results are illustrated by some typical examples.
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1. INTRODUCTION

The Wigner model of matter,'” which consists of an assembly of point charges
imbedded in a homogeneous neutralizing background, is a well-known
example of a classical or quantum system with long-range forces.

Here, we consider the classical version of this model as a caricature of a
more realistic two-component system with one active and one passive
component. This means that we shall focus our attention on the properties of
the particles only, while keeping the background fixed.

The current interest from a theoretical as well as experimental point of
view in v-dimensional systems with v and (v + 1)-dimensional Coulomb
interactions® suggests that consideration be given to arbitrary long-range
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Z For example, for two-dimensional systems with three-dimensional Coulomb interaction see
refs. 2—4.
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forces and to the properties of the equation of state of the active component as
a function of the asymptotic behavior of the force at infinity. We shall still call
such a system a ‘“one-component plasma,” although the force is not
necessarily the Coulomb force.

As a matter of comparison, Yukawa forces are also dealt with in what
follows in order to exhibit the noncommutativity of the infinite-volume and
infinite-screening-length limits for a certain class of observables.

The systems considered here are subject to free boundary conditions and
it has to be emphasized that none of the results reported below would have
been obtained with periodic boundary conditions.

In this paper, we study the equation of state for such a one-component
plasma; the first problem is to adopt a physically meaningful definition of the
pressure. Indeed, using standard derivations for fluids (without a rigid
background) one could introduce a priori several definitions for the pressure,
which we shall refer to as the kinetic, virial, thermal, and mechanical
pressures. It is the thermal pressure (erroneously called virial pressure in the
literature) which is usually considered in the study of one-component systems
and which leads to well-known pathologies in the case of Coulomb
systems.>~7 Although these definitions of the pressure are equivalent for
fluids, we shall see that they are no longer equivalent in the presence of a rigid
background and free boundary conditions. The following properties which we
shall derive indicate that the kinetic pressure, and not the thermal or
mechanical pressure, is the physically meaningful definition.

1. It is the pressure due to the active component and does not take into
account the external force necessary to keep the background rigid.

2. It is identical with the virial pressure.

3. It is nonnegative and is expected to tend to zero as the temperature
tends to zero; on the other hand, the thermal pressure becomes negative at low
temperature in the case of Coulomb systems.

4. Forasystem consisting of a finite number N of particles imbedded in a
very large background, it is expected that the physical pressure will tend to
zero as the size of the background becomes infinite (with N fixed). This is
indeed the case for the kinetic pressure, while the thermal and mechanical
pressures diverge.

5. Fornon-Coulomb interactions, there exist states which are not locally
neutral and the definition of the pressure should also make sense in those
situations. Again this is the case only for the kinetic pressure.

After a short description of the model in Section 2, we introduce in
Section 3 the different definitions of the pressure. The relations among these
definitions are discussed in Section 4 for the case of finite systems; in
particular, we show in this section that the kinetic pressure coincides with the
virial pressure; furthermore, for integrable potential, the mechanical and
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thermal pressures coincide (but differ from the kinetic pressure); on the other
hand, for Coulomb systems with spherical domains, the mechanical pressure
coincides with the kinetic pressure (and differs from the thermal pressure);
finally, we also give in this section a first motivation for adopting the kinetic
pressure for the equation of state.

In Section 5, we study the pressure in the thermodynamic limit; it is
shown that the kinetic and mechanical pressures are not entirely defined by the
state of the infinite system, i.¢., a knowledge of the state of the infinite system is
not sufficient to describe its thermodynamic properties. It is seen that these
pressures consists of two contributions: a bulk contribution, which is defined
by the state of the infinite system,® and a surface contribution, which is defined
by the state of a semiinfinite system. The analysis of the bulk contribution to
the kinetic pressure shows a very different behavior (factor 1) between the
Coulomb force and forces which decrease faster at infinity; moreover, it is
shown that for Coulomb systems with cubic symmetry, this contribution is
proportional to the “moment of inertia” of the charge distribution of the unit
cell. The analysis of the bulk contribution to the mechanical pressure shows
again a different behavior between the Coulomb force and those with a faster
decrease at infinity: it coincides with the thermal pressure if the force decreases
faster than Coulomb, but coincides with the kinetic pressure for Coulomb
systems without a quadrupole moment. The discussion of the surface
contribution is restricted to Coulomb systems with spherical symmetry and it
is shown to be related to a surface “dipole moment.”

A general investigation of the surface contribution is not given, but we
discuss in Section 6 some of its properties for typical examples [ v-dimensional
Coulomb, (v + 1)-dimensional Coulomb and Yukawa interactions].

Finally, we summarize our results in the last section and give a series of
conjectures.

2. DEFINITION OF THE SYSTEM

We consider a classical * one-component plasma™ (OCP), i.¢., a system of
identical particles in R”, with positive unit charge, imbedded in the uniform
background of fixed negative charges with charge density —p, (p, = 0).

The particle-particle and particle-bath interactions are described by
means of a two-body potential ¢(x; — x,) such that the force

F(x) = —=Vo(x) = —F(—x)

is C' and bounded for |x| > R, locally integrable, and continuous away from
the origin.

* At least if the force decreases faster than Coulomb at infinity and for those states of Coulomb
systems that do not have any quadrupole moment.
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In particular the following interactions are of special interest:
Coulomb force: F(x) = e2(x/|x]")
pseudo-Coulomb: F(x) = e*(x/|x|""") (away from the origin)
Yukawa: y=1, d(x) = u exp(—pulx) — 1]
v=2,  ¢(x) = Ko(ulx]) + In(GGyu)
v=3  $(x)=Ix|"" exp(—ulx|)

The equilibrium states of the finite system contained in the domain A
< R are described by correlation functions which are solutions of the
BBGKY hierarchy:

KTV p0(x,,..., x,) = [EPA(XI) + Z F(x, — xj)]

j=2
X PR 5 Xp) + J dy F(x; — y) (1)
A
X [pr— 1)()61 avery xn’ y) - p(/\l)(y)p(/{l)(xl smees xn)]
E, () =E+ J dy [F(x — y) — F(=y)]ea(y)
A

where c,(¥) = p{(y) — p, represents the *“ charge density” at yand E = E, (x
= 0) represents the “effective electric field” at the origin.

In other words, the equilibrium states of the OCP are parametrized by A
= domain, T = temperature, p = particle density, p, = bath density, and E
= electric field at the origin.

If Aisinvariant under inversion around the origin, i.e., A = — A, then the
state is invariant under the transformation x — —x if and only if E = 0.

The regular equilibrium states (RE states) of the infinite system are
parametrized by {V,}, T, p, p,, and E, where {V,} is a sequence of domains
converging to R; the RE states are defined by correlation function solutions
of the BBGKY hierarchy®:

kT le(n)(xla-"’ xn) = |:Ep(xl) + Z F(xl - xj):'
j=2

X p™(xy . X,) + f dyF(x; — »)
.
x Lo D0y s X0, 9) = PP3)P ooy X))

E,(x) =E + llgn j dy [F(x — y) — F(=»)]c(y),

v,

”

c(») = p V() — py
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which are clustering:
le(T")(xl,..., x| dx; < o0, V=2
It is known that the RE states are always lo ally neutral, i.c.,

lim — | dxpV(0) = p, @
A= 1AL Jo
if the force decreases as Coulomb or slower at infinity and if the state is
invariant under some translation group. Furthermore, the state is invariant
under the inversion x — —x only if E = 0.%®
We shall assume that the RE state parametrized by {¥,} arises as the
thermodynamic limit of the finite system {A}, where {A} is a subsequence of
{V,}. In the following, we consider only volume sequences { ¥} such that V,
= —V, and E = 0: i.e., we shall consider only states which are invariant
under inversion around the origin.

3. DEFINITION OF THE “PRESSURE"
(FOR FINITE SYSTEMS)

In this section, we recall several standard definitions of the pressure for
OCP consisting of N particles contained in a finite domain A. These definitions
are usually shown to be equivalent for fluids (i.e., p, = 0), but this will not be
the case for the OCP with p, > 0.

3.1. Kinetic Pressure

In the kinetic theory the pressure p%¥ is introduced as

N
=Y xFr = J Paly)y do(y) = vp¥IA|
i=1 oA

where p,(y) do(y) represents the time average force exerted by the particles on
the surface element do of the boundary A of A (JA] 1s the volume of A). With
pA(Y) = kTpl(y) we are led to define the ““kinetic pressure” as

kT 1
PR =——= | do(y) ypi(y) 3
v Al Joa

Property 1. (a) For any convex domain A, the kinetic pressure pi® is
nonnegative.

(b)ForE=0and A= —A, pP=0at T=0.

The proof of (a) follows immediately from Eq. (3). To establish part (b),
and to compare different definitions of the pressure, we make use of the
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BBGKY hierarchy to express p¥ in terms of the one- and two-point
correlation functions.
From Eq. (1) with E =0 and A = —A we obtain

kT VpiV(x) = j dy F(x — »)[pP(x, ¥) — ppp (x)]

which yields

J dx xVp(x) = kTJ do(y) ypR(y) — vIAlpkT
A éA

f dx x J dy F(x — »)[pR(x, y) — ppp(X)]

where p = N/|A]
Therefore

PR = pkT + VA J dx j dy xF(x — »)[pP(x, y) — ppoi (x)]

At T = 0 the RE states are defined by the solutions of the corresponding
BBGKY hierarchy and the first equation yields

0= f dy F(x — p)[pR(x, y) — ppp(x)]
A

which implies p¥ = 0.

Remarks. For Coulomb systems in one and three dimensions, Monte
Carlo computer simulations indicate that a stronger result, namely
limy_, p¥ = 0, should also be valid.®*® However, it should be recalled that
the limit 7— 0 must be taken after the thermodynamic limit A — co.

Using the truncated function

PR = PR (5, 3) = pLPV0)

we obtain

11
PR = pkT + VAl j dx J dy xF(x — n)pR%r(x, y) + calx)ca(»)]
A

1o f dx j dy XF(x — y)ea(y) 4)
vIAL Ja A

This last expression will be useful in the following to compare the
different definitions of the pressure.
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3.2. Virial Pressure

In the virial equation of state the pressure is introduced as

72— ,
@=ZFn' 4 Y xF,
pA v V|A, i=zl it

where F, represents the force on the ith particle due to the other particles and
the bath (not the wall).
We shall thus define the “virial pressure > as

1
p(A”’=PkT+*WZ xFD ©)

which yields

T LT LR SR OIS LR

ie.,
P ! ) (1)
=pkT + - W dx dy xF(x — y)ox(x, ) — pppi ()]
In conclusion, we have
Py =pY (6)

3.3. Thermal Pressure (Canonical Ensemble)

The thermal pressure has been introduced using the idea that the OCP is
the limiting case of a two-component system. Since for the two-component
system the pressure is defined by

oF
=——(T,V,N, N,
Pa aV(a H > b)

it seems reasonable to introduce a ‘““thermal pressure” for the OCP as
P& =kT(8/6V)In Q(T, V, N, N,)
where Q(T, V, N, N,) is the partition function associated with

2

N
P:
H, = i; 2 + Up(Xy s Xy)

N,
UA(X5eer X)) = Z d(x; — ‘Vb Z J dy $(x; —y)
i A

1#)

N,\?
+z<‘v'> fAd’CfA"”“"—”

and p, = N,/V.
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Using the standard dilatation method,

F 111 (800)
;0 QT V. N, Ny) = 5_7< )

£=1

o) = N )»_VNZ:VN J dxy - dxyexpl — Bus(Xy,..., Xy)]
A

1 N,
u:(xp---, Xy) = 5 Z PLix; — Xj)] - Vbz J dy ¢[E(x; —¥)]
i JA

i#j

+ Al —Nb ’ dx d (]5 X —
we have

kTailn O(T, V, N, N,) = ka—;<<a”’> >
=1

—-p/cT+vL Z ’F(x—x)>

i#Fj

—1ﬂ<zf dy (x; — VF(x -y>>

A
+W<7> Ede Ldy(x—y)F(X—Y)

Therefore

(e),ka+4<Z > II/J dxj dy xF(x —y)
v (S f B ¥F - ) )

1
PO =p — Py 2 j dx j dy xF(x — y)ea(y) 7
Vv V A A

Using Eq. (4), we thus have

11
PR = pkT + - Al f dx j dy xF(x — y)[pR)r(x, ») + ca®)ea)] (8)
A
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3.4. Mechanical Pressure (Canonical Ensemble)

For a fluid parametrized by the parameters (7, V, N, p,) the mechanical
pressure—or partial pressure due to the particles—is introduced as

o _ oF d |1
o= —%(T V. N, py) = p? | = J(T, p, N, py)
We then define the “mechanical pressure” as
P =kT(0/0V)In Q(T, V, N, py)

Using again the dilatation method, we have

PRV = pkT + ’W<Z X; ,>+ YAl J dxf dy V. [x¢(x — »)]ea(y)
which yields [assuming ¢(x) = O(1/|x|*), o < v as x — 0]

P = kT + - |A|<z F>+|7\—I dy ex(y) f do(x) xp(x — ) (9)

This definition of the pressure for OCP was first introduced in Ref. 11 and
called “mechanical” since in the grand canonical ensemble

PRz T, py) = (0/01AD) In Qa(z, T, py)

while

PR =[In Qx(z, T, pp)1/IAl

4. RELATIONS AMONG THE DIFFERENT PRESSURES

4.1. Arbitrary Interactions
(i) We have already obtained the relation (7),

1
PR =P+ j dx J dy xF(x — y)ea(») (10)
vIALJa A
Using Eq. (1), we thus have for E=0and A = —A
1
PP =p 4+ 2 ST | AXE ) an

(ii) From Egs. (9), (5), and (6)

Py =p® 4 22 | Al f dy cx(») J da(x) xp(x — y) (12)
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(iii) It follows from the equation preceding Eq. (9), together with Eq. (10)
that

1
PR =P+ o f dx JA dy ¢(x — y)ea(y) = pR ~ W gy + 2upp (13)

Property 2. (a) p¥ = p.

(b) For a fluid, i.e., p, = 0, we have pi = p = p» = p¥

(c) If the potential ¢ is & 1 and if p, converges to a RE state locally
neutral and invariant under some translation subgroup 4 of R in such a
manner that

@

1
lim —— dx 1p(x) — pP(x) =0
a-w |A

then

lim p™ = lim p¥
A-Ry A-RY

ie., p™ =p® and

Ah_{gv |A| ity + 21y =0

Proof. Parts (a) and (b) have been already established.

P —p = Ill)\_bl dx J dy $(x — Mo (y) + PV — pP (]
A A

but ¢p(x — y)e(¥) € L1dx), and ¢(x — y)e,,(») periodic in (x, y) implies®

1 1
lim p, - Al J dXJ dy ¢(x — p)c(y) = pbA—OJ dyf dx $(x — y)c,(y)
A A Ay 244

=0 (by neutrality)

(where A, denotes a “unit cell” and {A} is a sequence of volumes defined as the
union of unit cells t,Ay, a € Z) and

i”j dxf dy |(x — )IpP) — P
AL I

1
<pb”¢”3’1W J dy 1p8(y) — pX(»)|— 0 by assumption

To conclude this discussion, we consider the special case

F(x) = *(x/Ix|"" ")
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Then ‘
xF(x) = €%d,  + (y — Dp(x)
and

11
<0>—p/cT+~W dxj dy3[es, 1 + (v — Do(x — y)]
A n

X [P(z) (x, ¥) + calx)ea()]

= pkT + —WE(S {f dxf dy pr(x, y) + [J:\ dx cA(x)] }

— 1) s —
+(y )v |A| {upp
which yields
y—11 per  e? N
@) _ A —— T _ 2 -
PN = pkT + — Al <uA>+5,.,1[ 5y Fo, M —p)* | p Al
(14)

Expression (14) is erroneously called the “virial pressure” in the literature.

4.2. Coulomb Systems
Property 3. For Coulomb systems with spherical domain A (radius R)

2 2
P e” w,
Ky _ 50 . _ d 2 — Y R?
(@  pyY —pi R L y eAYI® + polp — py) 7

(b) PR =P = —pd (RN — N,)
where N, = p,|Al, 0, =2, w, =2z, and w, = 4.
Corollary. For Neutral Coulomb systems with spherical domain

P

1
PR =PV = ——=Cupy + 2up> = R

IA]
Proof. (a) We have

j dy cAlyl>,  pP—pm =0

j do(x) Xp(x — y)
A
:vf dx(p(x—y)—f dx xF(x — y)
A A

=VJ dX¢(X—y)—f dX(X—y)F(x—y)—yf dx F(x — y)
A A A
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But for Coulomb systems
xF(x) = [e2d, , + (v — 2)p(x)]

Therefore
LA do(x) xp(x — y) =2 J dx ¢(x —y) —y J dx F(x — y) — €*|A]d, ,

Since

1 ey o2
— | d ) Y S ~
[MJ;xMx.w 5 TR+ 50, (1s)

if A 1s a sphere of radius R and y € A, we obtain

L . do(x) Xp(x — y) = |AV§(R) (16)

Al = o ,R"/v, Wy =2, w,=2n, w;=4n (17
and thus it follows from Eq. (11} that
PR =R = —p (RN — Ny)

(b) It follows from Eqs. (13) and (15) that for spherical domains

) (I e?
dy CA(J’)[‘ IR + E $(R) + 55\1,2

P =R = p, j
A

4

pye’ 5 v 2
= dy CA(J’)|Y| + pp(N — Nb) ¢(R)§ + 5 0y,2
A

2R

which concludes the proof.
From Eq. (14), we have

2

-2 1 2
”viﬂ@o+m{i§+%ww—mﬂ a8)

pﬁf) = pkT +
where

<uA> = upp + upb + Upp» ubb = %pbz j dx J dy ¢(x ‘}’)
A A
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Using property 3(b) with Egs. (13) and (18), we obtain for a spherical
domain A with radius R *

1
V= 1 p%) - ka— R <upp + 2”pb> - pr(b(R)

pe* pPeflAl elpplAl 1
v=2  p¥ = pkT — T + . 2b - W< o> — Npp(R)

v=3  p¥ = pkT + = Cu,, — 2u,> — Np,d(R)

1
31A]
Combining these expressions with the expression for p% given by
Property 3(a), we have

2
_pe’ o, L , v e
Upy = dy p(»)y* — 5 NN [¢(R)+5v, —}
o oy, 27 *2
and
2
PR = pkT — R” J dy pR(»)y*
A
B RN 19)
v Al
N
o=
Al

4.3. Conclusions

1. Let F(x) = e*(x/|x|""!);fory = 1 (e.g., Coulomb in two dimensions or
pseudo-Coulomb in one-dimension), we have

pe> o
PR = pkT ~ 5t IAI 5, = ps)° 20)
which shows that the thermal pressure becomes negative at low temperature for
neutral systems.
This same property also holds for Coulomb systems in one and three
dimensions; for example, in one dimension
6'2
R = ka— Al Qup) < pkT — = [1 = 3(N — Ny)*]
This remark shows that the thermal pressure cannot represent the ““pressure”
exerted by the particles on the surface of the container, which is a positive
quantity; on the other hand, the kinetic pressure has this positivity property.

* The expression for v = 3 was derived and studied by computer simulation in Ref. 10.
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2. Let us consider a spherical Coulomb system; in the limit A — co with
Nand p, fixed it is expected that the ““pressure” exerted by the particles on the
wall should tend to zero.

Now, it follows from Eq. (19) that p® will tend to zero in this limit [if
(1/|A)<u,,> tends to zero for® v = 37; furthermore, this result implies that
(1/IAD [4 dy pP(»)lyl* also tends to zero.

On the other hand, by Property 3(b), p% will tend to + co if v = 1, 2 and
to —oo if v=3.

Finally, using Property 3(a), we see that p% will behave as

POy o P =2y
2 v v+ 2

and will tend to + co.

This shows that the kinetic pressure is the only pressure that exhibit the
expected property to tend to zero in the limit A — oo, with N, p, fixed.

3. The result that the different definitions of the pressure are not
equivalent is directly related to the fact that we have a fixed background p,
> 0; this result will also hold if the fixed background is not uniform. On the
other hand, as we shall see for two-component systems (without background),
all definitions are equivalent.

The mathematical origin of the result goes back to the fact that the

integrand in the definition of p{,

F(x — [pP(x, ») — ppp(x)]

is not symmetric in (x, y).

4. The consequence of the above result is that one should be careful in the
definition of the “pressure.” In fact, the pressure one wanis to consider in the
equation of state of the OCP is the pressure due to the positive particles with the
background considered as strictly passive.

It appears that the thermal pressure does not have the properties required
by the stability conditions of thermodynamics and is thus not the right
quantity. As we have seen, both the thermal and the mechanical pressures do
not have the expected property to tend to zero in the limit A — oo with N and
p, fixed. We shall see in Section 6 that p® = lim, ., p&¥’ is also well defined for
nonneutral systems (with Yukawa interactions), which is not the case of p™.
Finally, it is expected that p® will tend to zero as T tends to zero (as it should),
while this is not the case of p“.

In conclusion, the kinetic pressure is the only pressure that has all the
required properties; it should be stressed that it is defined in terms of the force
and not in terms of the potential.

5 For v = 1 it is possible to see that this condition is satisfied.
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5. The virial theorem, which is usually written for Coulomb systems as

2E + (v = 2Dupy + 6,1 = vAlp
should thus be written in terms of the physical pressure P [Egs. (12), (13)] as
2(EF™) + (v = 2)<up) + 8, 5[]

- v|A|{ Y- f dr o) — oo) + 2 f da x[o(x) - %J}
@1

where ¢(x) — @o = [, &y d(x — y)er(y).

Let us note that it is possible to compare Eq. (21) with the equation
derived in Ref. 12 for quantum systems at 7= 0. Indeed, at 7= 0, p%¥ = 0
and thus for v =3

2CERY 4 Cupy = = 3p, j dx [@(x) — @0l + ps j do x[p(x) — ¢o]

oA

which is identical with the starting point, Eq. (6) of Ref. 12.
6. Let us consider a “two-component system” (E = 0, p, = 0). From the
BBGKY equation®

Vo (x) = fo j dy F(x — )[pPl(x, y) — pP(x,»)], o= *+1
with

p(x) = p+(x) + p_(x)
we obtain

Vo(x) = B J dy F(x — n)(p'?s + p2_ — p' P — p@)(x, y)
PR = kT+ IAI J dx xVp(x)

1
—-ka+~—»J‘ de dy xF(x — )
A A

X (P + p8L — p?_ — p@)(x, )

On the other hand, the thermal pressure is given by

(9) = ka +<Z F(X,- - xj)xi>+<z F(yk - yl)yk>
i#j k+#1
”<Z Z F(x; — y(x; — Yk)>
i k
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(x;, y, denote, respectively, positive and negative particles). We thus have

k) . (¢}
pR=pQ =pP

and we notice that the integrand in the definition of p¥
F(x, p) (0 + p2_ — pfL — p@)(x, »)

is symmetric in (x, y).

5. PRESSURE IN THE THERMODYNAMIC LIMIT

In this section, we study the definitions of the pressure in the thermody-
namic limit A — R’ and we assume that the state obtained in this limit isa RE
state with respect to f, { A}, invariant under some (discrete) translation group 7.

To simplify the discussion, we take E = 0 and we consider only sequences
{A}invariant under inversion around x = 0, i.¢., the state obtained in the limit
is invariant under the transformation x — —x; furthermore, we shall consider
only sequences of domains A which are unions of *“cells” 1Ay, a € 7, with Ay a
“cell” centered around the origin®; the indices r, s, ¢ will represent the center
of these cells. Finally, we shall restrict our discussion to systems which are
neutral,” so that

j dy ca(y) =0, f dy ye (y) =0

j dy c,(y) = 0, j dy ye,(y) =0
Ao Ao

and in some cases we shall introduce the additional assumption that the state
has no quadrupole moment, i.c.,

J dy (¥ 645 — vyarp)cw(y) = 0
Ag

As we shall now see, the analytic form of the pressure will depend
strongly on the asymptotic behavior of the force at infinity. We shall then
introduce the following conditions on the force:

Hm J7FGE) =d(£) #0  withy>v — 1

A—
Ix[7 "3, F,(x)] = O(1)
X" 210,0;F ()l = O(1) as [x| — oo

6 At this stage A, can be any “cell”; it is not necessarily the parallelepiped centered on the
translation vectors and does not necessarily have a volume equal to p, .
7 For nonneutral systems see Section 4 and the examples in Section 6.
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The first two conditions were introduced in Ref. 8 to discuss equilibrium
properties of systems w1th10ng -range forces. Werecall thatfory =v — [ (e.g.,
Coulomb systems) the RE are always locally neutral.

The “excess pressure” with respect to p©, ie.,

Aﬁmzﬁm_ﬂmziﬂiww—ﬁ@]
Ap(m) :p(m) _p(e) = 132’1[;1%‘ [pxn) —pgf)]

can be seen as the result of two contributions: first a ““ bulk conrribution™ given
by

il

1
lim 22

Apth)
P bulk e |A]

f dx j dy XF(x — y)c,(»)
1 ' (22)
Apih = lim p, — f dx j dy ¢(x — y)c,(»)
I AN A
where ¢ (y) = pI(y) — 2 is the charge density in the infinite system; and a
“surface contribution” given by

Ap) = Alfﬁv TW J dx f dy xF(x — »)[pV(») — p ()]

(23)
Aplh = lim p, — A J dXJ dy ¢(x — VPR — pP (W]

A—-Ry

We note that the “bulk contribution” can be obtained from the
knowledge of the state of the infinite system where the limit A — R is taken in
the same manner as the limit defining the state; furthermore, this contribution
is zero if the state is locally neutral and invariant under translation, i.e., App
appears as an ““order parameter” for the crystalline state.

On the other hand, the “surface contribution™ will depend on the
limiting process p, — p,, and cannot be obtained from the knowledge of the
state of the infinite system. We thus arrive at the conclusion that for a system
with fixed background a knowledge of the state of the infinite system is not
sufficient to characterize its thermodynamic properties.

Let us note that it is expected that Ap{), increases as the temperature
decreases, while Ap®); decreases; moreover, it is expected that p® tends to
zero as T— 0.

Finally, we remark that for Coulomb systems Ap™® is strictly positive at
low temperatures.
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5.1. One-Dimensional Coulomb Systems (Radius R)

To gain some insight into the problem, it is useful to discuss first the
Coulomb system in one dimension.

5.1.1. Bulk Contribution. By definition of the bulk contribution
(22) and using Property 3, we have

2

R
. . e .
Apgﬁ)lk = Apgaufk = APbuics Appg = — lim 4 dr Coo(")|”|2
R-x 2R - R

Assuming the state has some periodic structure, i.e., ¢ {r) = ¢, (r + a),
and is obtained taking the limit R — oo as R = (N + $)a, with N integer, we
have

oy N a/2
Appy = — lim 22 Y j dr ¢, (Nlr + kal?

N-w 2R Sy —aj2

Using neutrality and invariance under inversion, we obtain

aj2

1
Appu = _Pbez 2 J dr Coo(”)"z (24)

—af2

Remarks. (a) It is expected that [#% dr c_(r)r? is negative, i.e., Apyuy
= 0.
(b) It is important to take the limiting procedure in the same way for the
limit p, — p,, and the limit in the integral ; otherwise Apy,,, will depend on the
limiting procedure.

For example, the state of the infinite system could have been obtained
taking the limit R — oo as R = Na, which would have given ¢ '(r) = c(r

— a/2) and

. pbeZ N a 5
Ap{y = — lim Y dr ¢ (r)(r + ka)
N-o 2R k=0 JO

Using neutrality and invariance under inversion, then
a a al2
J drc,,'(r) =0, f drc,/(rr= J dr e (H(r +a/2) =0
()] 0 —af2
which yields
1 a
Aptux = = pye’ 2 [ dr ¢,/ (r)yr? and Apounc = APy
J0
On the other hand, if we had taken expression (24), we would have obtained

- 1 a/2 a/2
Apyic = _Pbez 2 j dr Coo/(”)”z = Appux — 2a J dr ¢, (rr # Apyu
0

—al2 '
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(c) Note that for y-dimensional systems with spherical symmetry

A — Pbez Rd v+l
Ppulk = “RLm 2R , . ¥ Co(P)r

5.1.2. Surface Contribution. To evaluate the surface contribution,
we have to consider first a finite system. Since v-dimensional Coulomb systems
with spherical domains can be treated in the same manner, we shall directly
consider this more general case,

Py 1

APgs = Ahfﬁ AL dy [p(») — PP ()] J dx xF(x — y)

But for a Coulomb system

J dx xF(x — y) = J dx(x——y)F(x—y)-f—yj dx F(x — y)

f

f dx [€%0,, + (v = 2)¢(x — p)] +y f dx F(x — y)
A A

I

e’|Ald, , +v f dx ¢(x — y)
A

+§ —ZJ dxqb(x—y)—t—yf dxF(x—y)J
I A A

which yields for A a sphere of radius R

j dx XF(x — y) = €’|Al0, , + Y(R) — 3¢’ w,ly|?
A

Using the neutrality condition

JR dr(R—r)"'"[pPR—-7r)—pV(R=-1N]=0

we have
pb v
A — lim 22 (1) b 2
Durr = Jim IAI f dy [px’(¥) — p%’ (D)1l
1 R
= e lim — | dr 00 - 0]
2 Row R 1o

1 R
—2 e lim — | dr (R— 1" [pO(R — ) — pO(R — )]
2 R,

R v—1
pr,e* lim f dr r<1 - L) (1 >[p(”(R —r) = pP(R -]
R-ow Jo R
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If the thermodynamic limit is reached in such a manner that

s}

pAr) — PP < (R - 1) with j dr rp(r) < o

0

then by dominated convergence

Apsurf = ezpbwv J‘ dr r 5,0“,(7')
0

where dp,(r) is the difference between the density for the semiinfinite system
and the infinite system (from the boundary).®

5.1.3. Concluding Remarks. (a) This simple example has shown
that Ap,. 1s entirely defined by the state of the infinite system and is
proportional to the “moment of inertia” of the neutral dipole free charge
density of the unit cell. On the other hand, to obtain Ap,, it is necessary to
know the density function of the semiinfinite system and the contribution
appears as the “dipole moment” of ép,(r).

(b) Let us consider the one-dimensional system at 7= 0, i.e.,

coo(r):25(r——na)—pb, a:pb—l

Then
1 (2 a* e
Apyuk = pye? a J—a/Z drr* = p,’e? -1 >0
Apoi=0, pP(T=0)=p?+e*12=0
We thus see that p® ar T = 0 is identically zero, while p© = —e?/12 is

negative at 7 = 0.9

5.2. Bulk Contribution (Arbitrary Interactions)
5.2.1. Bulk Contributions to Ap® We have

1
Apl = lim P j dx f dy xF(x — y)c,(»)
iow ¥V 'V}.I V.

1 1
— lim|22 =y dx dy xF(x — y + 1 — r)c ()
M[v N2 1Ay J g

+f’_bl __J dxj dyF(x —y +1—r)c, (y)}
v fa%

8 For v = 1 the result of Ref. 13 gives an explicit expression for dp,,.
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Introducing the fields

e(x) = j dy F(x — y)e(y) (25)

Fw) =" | dre(x+u) = |A|J dxf dy F(x +u — p)c () (26)
0

I
Aol Jay

which have a straightforward physical interpretation, we obtain

1
Ap¥y = hml:/’b A ]J- dxxe(x+t—r)+-—-2tf(l—;):l
[N 4]

N— o 7_1\7
Since
e,(x) = f dy co,(MIFLx) =y VE() + (1 — 0y 0,0,F,(x + 0.»)]
Ao

0. <10, 1]

we have e,(x) = O(1/|x|"* 2) for neutral systems, invariant under inversion (i.e.,
no dipole moment), and thus

1
hm— dxxe(x +t—r)= f dx xe(x + u)
N ZiAd f ( 2Tad

Furthermore, the invariance under inversion around the origin implies
F(u) = F (—u)

In conclusion, for neutral systems, invariant under inversion,’

1
Ap == —— | dxxE,(x) + 5 Y uF () 27
Ag u
where!°

E,(x) = lim f dy [F(x — ) — F(=y)]eL(y)
Va

A= 00

® We have assumed that
1
lim;v—Z(t —DF (-1 =Yy uFu);

we know this is true for y > v — 1 and for Coulomb systems without quadrupole moment.
107, can be taken as any union of unit cells A,.
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On the other hand, we can also write

{
Api = 1im[pfb — f dx j dy (x = y)F(x — y)e,(»)
Ly IV v, Vs

pp | 1 f
+ ==y — dcw(y)yj dxFlx—y+t—1r)
v Nt,r Aol Ao Y Ao

r

Pe 1 o ) — —

t,r

Writing the first term as

1 1
—Y— | dye,(» | dx(x—y+t—pDFx—y+t—r)
]vr,rAO Ao

(]

we see that for neutral systems, invariant under inversion (i.e., no dipole
moment) the first two terms are of the order |t — r| "%+ Vor |t — 1 "D fora
Coulomb system without a quadrupole moment; indeed

(a) J dycw(y)f dx(x —y + wF(x ~ y + u)

= f dy ¢ .(¥) J‘ dx [((x + WF(x + u) —y V(xF)(x + u)

+ (1 — 6y 0,0,(xF)(x + u + 0,.3)]
(b) Coulomb
xF = [e?6, , + (v — 2)$(x)]

and

f dy c.(y)y* f dx F(x —y + u)
Ag Ao

= f dy ¢,(¥)y* j dx [F(x + u) — Y  0,F(x + u)
Ao Ao

+ (l - gx)yiyj 6iajFa(x +u+ gxy)]
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Therefore, if y > (v — 1) (neutral, no dipole moment) or Coulomb (y = v
— 1) without quadrupole moment,

Aphy = i L dy c,(y)
v IAOI a%)

X {lim f dx[(x — p)F(x — y) — xF(x) + y V(xF)(x)]}
Vi

A=

IAol J dy co(»)y

x {lim J dx [F(x — y) — F(x)]} — —2172 uF (1) (28)

A=
To state our next property, we need the following definition.

Definition. Two sequences of volumes {V,} and {V,’} are said
to be ‘“equivalent” if |V, AV, |=o0(V,nV,), where V,AV, =
Vv VNV, n V,)) is the symmetric difference. «

It was shown in Ref. 8 that if a state (of the infinite system) is a RE state
with respect to {¥,}, then it is also a RE state with respect to {¥,’} whenever
{V,} and {V,'} are equivalent (for y = v — 1).

Property 4. (a) We have
1
Apt =—=— | dxxE,(x)+ o™ Y uF (u) (29)
Ao Vo

(b) Furthermore, if the sequence {V,} is equivalent to the dilatation of
some fixed volume V,, i.e., V; & {ix;x € V,}, then, for y > v — 1,

1 1 )
Apl =22 | dxxE (30)

for Coulomb systems without quadrupole moment (with respect to A,),

lpb 1 pb€2 a)v 1
dx xE - v 2
2 1ol Ju T = A Aodycm(y)lyl €2))

Remark. The overall “macroscopic shape” defined by means of ¥,
does not enter into the expressions for Ap{¥),, Egs. (30) and (31); however,
Ap¥) will depend on the “microscopic shape” as defined by A,.

If
|
|

k
Ap f)u)lk
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Proof. (a) Already established.
(b) For y > v — 1, we have®

lim J dx[F(x~y)—F(x)]=0
Vi

A= o

lim J dx[(x —y)F(x —y) — xF(x) + y V(xF)(x)] =0
Va

A=

Indeed, let y/(x) = xF(x). Then

'f dx [(x —y) —¥(x) +y VW(x)] =y J dx [V(x) — Vy(x + 0.)]

Vi
f.e[0,1]
But

< J dx 10,(x)|
VAV,

f dx [@0)09) — @)x + 03]

where V' =1V, = {x + y;xe V,}.

Therefore, repeating the argument of Ref. 8, we find that the difference
will tend to zero if 0,4y = o(1/]x|"~!) when |x] — oo. By the condition on the
force, namely

F(x) = O(/Ix"),  0.F5(x) = O(1/Ix|"™)

this condition will be satisfied for y > v — 1.
It thus follows from Eqn. (28) that for y > v — 1 (neutral, no dipole)

1
Apgﬂlk = _Z Z w7 (1)

which concludes the proof because of (a).
For Coulomb systems, we have

xF =[e?9,, + (v — 2)p(x)]
Therefore Eq. (28) yields (Coulomb system without quadrupole moment)

y—2 1
TA 1 d Cw()
1Al L i

X lim f dx [p(x — y) — ¢(x) +y Vd(x)]

A= o0

Apg(u)lk = Ps

L b dy ¢o(p)y lim J dx [F(x — y) — F(x)]
A= @

v Aol Ao Va

1
—‘E;g;ﬂgﬁ(u)
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Using the result of Ref. 8, we know that

lim J dx [Fx —y) — F(x)] = lim J dx [Fix — y) — F(x)]
rmo Jv, imo Jawv,

= _ezCijyj
where
Yi
YK

Vo

On the other hand

lim J dx [¢p(x — y) = ¢(x) + y Vo(x)] = —3e*(YICly>
Vi

A=

We thus have

w o P L oIy — L YuF
AP > A y ¢, (VI<YICIY) 5 Zu:uJ(u)

which together with Eq. (29) yields for Coulomb systems without quadrupole
moment®
P 1 pb€2 w, 1

Ap =2 dx xE — —_— d 2
\Pbulk v 1Ag| s XX p(x) 4 v A N ly e (MY

We shall now derive an explicit expression for the excess kinetic pressure,

Le., for jAO dx xE(x), in terms of the Fourier transform of the one-point
correlation function. For this derivation, we shall consider that the unit cell
A, is a parallelepiped based on the translation vectors.

Property 5. Let A, be a parallelepiped with basis vectors Aa®,
a® = 1.

For any locally neutral RE state invariant under the translation group
defined by {A;a®},

1 d - | . .
B f dx XE,(x) = — } [ ZO (—1)""¢(an“))/3@(an“’)] (32)

i=1
where ¢(k) = [, dx ¢(x)e ** is the Fourier transform of the potential
1 )
Po(k) = — J dx pl(x)e ™™
1 Aol Jao

and QY denotes the vectors of the reciprocal lattice.
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Proof. (i) Fourier transform

@k) = J dx p(x)e” ™ = F o], k e reciprocal lattice

Aol

. 1 >
p(x) =) egk), j dx p(x){(x) = }, ¢(k) (k)
x Aol Ja K
If

plx) = j dy G(x — y)h(y),  h periodic over A,
v

plk=0) = J dx p(x), Gtk # 0) = Glk)h(k)

Aol
Glk) = f dx e **G(x)
Ry

(ii) We have!!

1 1 .
AL J dx XEP(X) = Z Z g’-[xu]‘o/:[Eals g[xa] = J‘ dx e_'kxxa
Aol Jao = Aol o

Introducing
x = ua¥, [a¥ =1, ue[—A4;/2,4,2]
k = anU), n; e”Z

then

l>};i

[

=Yg

X% = oWy = Z (e(“)a(j))uj = T“juj
Jj
k* = e¥k =Y (QPe®)n; = n1™
i
. 2n
; T = X 5ij

J

1 Notice that for k = 0,

i
FIEJk=0)= ] dx E (%)

is well defined since E,(x) is bounded for a perlodlc RE state.
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J ) Ayf2 J‘Av/Z < 2 )
=-—> T du, - du, u; expl — i — nju
Ao ; J— sz Jean ! A

, Hr
=Y T = 6,0 — [T s,

—i(2n/A )”J i#j
i J B =TT Y oni /2) FnQ9)7.,(n,Q9)
But
=-Vp,  Fk) = —ke“P(k)
Fa(anU)) = __l'an(ﬂe(a)qB'(k) = _inj—fi“(ﬁ(k)
Therefore

1 i ~ . 4
e j dxxE(x) =— 3 3 (—=1)"¢(n,Q")5,(n,Q")
,AOI Ao j=1n;#0
Property 6. “Coulomb systems.”’ (a)Ifthe basis vectors of the parallel-
epiped A, are orthogonal, then for any A,-invariant RE states of a Coulomb
system
1

etw, 1
| axxE,x) = — —J dy e,
A J ’ 2 jag) Y Pea)

(b) For any RE state with cubic symmetry

o, 1 J Pbe o, |1
A (1:_‘) e dx xE (x) = d | |2Coo(y) 33
Poulk = 5G] L ol 2 v Ay Ja Y &)
Proof. We have
~ w ~ ; w
k — eZ ‘L’ n. Uy = 62 [ S
(k) B ¢(n,Q") [@n/ApnT?
Therefore

v

b j dx xE (x) = —e’w y (—1)"1———1——— 5., (7,QY)
Al J,, ” [Qn/A )7 P~V

i=1n;#0

” 1 1
= —e’w, (-
i1 n,;o [Qn/Apn] 1Al

2
X f dx, j dx, {exp{i(%)njxj}}cm(x)
Ag Ap J
=—e’w LJ dx
"1Aol Jao

(=1 expli2n/A)n;x;]
x ; {,,;o [Q@n/Ajn1? }Coo(X)
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But
(=1 expli@a/Apnx;] A, 2 ox2

Z = + el

"7 0 [@n/Apn;1* 24 2

which concludes the proof of (a) because of the neutrality property.
The last part of the property follows then from Eq. (31).

5.2.2. Bulk Contribution to Ap™. We have

- P
Apim, = g f dxj dy $(x — y)co(y)
d Va Vi

= lim p"ZLJ‘ de- dyc,(P)px—y+t—7)
Ao

amo N tr IAol

Using neutrality and invariance under inversion, we can replace

J dx f dy c,(NPlx —y + 1 =)
by

j dx f dy cs(MLP(x —y +u) — ¢(x + u) +y Vo(x + u)]
Ao Ao

which behaves as [u]~¢*" or as juj"“*? for a Coulomb system without

quadrupole moment.
We thus have for y >v —1 and for a Coulomb system without

quadrupole moment

1
Apiile = Py g L dy cw(y){m L dx [p(x —y) — p(x) +y V¢(x)]}

and therefore the results of Section 5.2.1 yield the following:

Property 7. (a) If y > v — 1, then [p™ — p®], ., = 0.
{b) (i) For Coulomb forces without quadrupole moment

2
- ppe” @, 1
Apfi =="5—=* i dy c,(Mly?
0 Ao

ie.
1
[P(k) - p(m)]bulk = _5 Z uF (u)

(if) For Coulomb forces with cubic symmetry

[P(k) - P(m)]bulk =0
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5.2.3. Concluding Remarks.

1. Fory > v — I and for Coulomb systems without quadrupole moment
with respect to A, it follows from the results of Sections 5.2.1 and 5.2.2 that

lp, 1 | R
[PY — P Tpun = ) ;é Ayl N dx xE,(x) + 5 [P = P
lp P punc x XE ,(x) + Z uF (u)
v Aol Jay Vo

1
[P(k) _p(m)]bulk = T Z uF (u)
Moreover, if y > v — 1, then

m . P
[p™ — p(e)]bulk =0, Z uz (u) = T

dx xE (x
[Agl Jy, X0

but for Coulomb systems with cubic symmetry
[p® = P Thui =0, Z uF (u) =0

2. One should notice the factor 1 of difference between Ap{), for
y > v — 1 and for Ap{), for Coulomb systems with cubic symmetry.

3. For Coulomb systems without quadrupole moment Ap{), is pro-
portional to the moment of inertia of the charge density in the cell A, if
and only if ¥, u% (u) = 0.

4. Properties 4 and 7 show that for y > v — [ and for Coulomb systems
without quadrupole moment with respect to A,, the bulk contribution to
p® and p™ does not depend on the “macroscopic shape” as defined by
Vo (e., ¥, can be taken as any union of cells A,), but will depend on the
“microscopic shape” as defined by A,.

On the other hand, it is possible to show!# that for Coulomb systems
with nonvanishing quadrupole moment Ap¥), and Ap™), will also
depend on the ““macroscopic shape.”

5. Property 7(a) extends Property 2, p™ =p from y>v+1 to
y > v — 1, but the result is now restricted to the bulk contribution.

6. Property 7(b) extends Property 3, p™ = p™®, from spherical domains
to domains with cubic symmetry, but is also restricted to the bulk
contribution.

7. For Coulomb forces and general domains, there exists a repre-
sentation of the potential by means of a double Fourier series ** which yields
the result

o 0ye° 1
Bpihe = =5 oy 5 f dy e (¥)<HIFLY
Ao
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where [ is a symmetrical tensor of unit trace depending on the sequence { ¥V, }.
In the cubic case [ = (1/w,)C.

6. APPLICATIONS

In this section, we illustrate the previous derivation by some explicit
examples. We shall see in particular that it is not possible to obtain the
equation of state of the one-component plasma using the Yukawa potential
and passing to the limit u — 0. We shall also see that the definition of p®
still makes sense for nonneutral systems, which is not true of p™.

These examples show that Ap&), and Ap%). can have either sign
and it appears that Ap{); is minimum for cells A, defined by the vectors
of the translation symmetry group.

6.1. One-Dimensional Systems'?

We assume that the state of the infinite system is periodic with period
a,'® and is obtained by means of a sequence of domains V, =[—L, L]
with 2L = (N + 1)a. In particular the states of the finite and infinite systems
will be invariant under inversion.

For a one-dimensional system, Eq. (13) yields

L L
P —pl) = ;7’: J dy ex(y) J dx [p(x — y) — d(x)]
—L L

L

+ pp(p — P) j

dx ¢(x)
L
1.€.

PR —pR = %i J dy cp(¥) f dx [¢(L + x) — $(L — x)]
—L 0

L

+ pp(p — pp) j

dx ¢(x) (34
L

L
PR p = —p, J dy cA()$(L — y)
. ~L

(expressions which are valid without assuming neutrality).

12 For a more detailed discussion of one-dimensional systems, see Ref. 15.
13 In particular it could be invariant under translation.
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6.1.1. Coulomb Potential: ¢(x) = —e?|x|. Asshown in Sections 4.2
and 5.1
P p =

a2

1
[P(k) - p(e)]bulk = —pye’ P j dy Cco(y)yz

—aj2

o}

LY = p@Jurr = 20 J dy y opu(»)

4]
In particular at 7 = 0, Ap®), > 0 and Ap¥). = 0.

6.1.2. Yukawa Potential: ¢(x) = (e*/u)(e ™" —1). Using the
general result of Section 5, we have for neutral systems

21 N\ .. f2%
P(m) ‘Pw) =0, [P(k) —P(O)]bulk = -%Pb Z (— 1)"¢<’ ”>Pg)<7 ”)

n+0 a

where for the Yukawa potential

Plk) = 2¢*[(k* + 11?)

Therefore
2 [aj2 i(2n/ayny
Pe €
A = —-J dy e, T (~1)
a J-an2 b n;O [Qr/an]? + u°
But
Yoy ener e chw) L
5o [@rjayn]? + p*  2u sh(ap/2) p?

which yields, using the neutrality condition,

pbel al2

“2ush(ua2) J-
On the other hand p™ = p® implies

k) dy c,(y) ch(uy) (35

[P — p(o)]bulk =

L 2
[P = phus = —pp lim | dy (o, = p)) = (e 1)
Low Jo1L (~L+1L) U
P l—e™
= ppe j dy op(y) ———— (36)
0 U
2 L
- . opet 1
[p( ) —p(e)]surf = lim bz e J dy (pgl—)L,+L) - p(c;é))(Y)
L

Lo M L j_

X (e_"L _ e—u(L~y)) =0
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Taking the limit 4 — 0, we obtain

Yukawa y— 0 Coulomb
™ = plpurc = 0 [P = pPpuue = I = 0)
[P = P = 0 [P = P e = Hu = 0)
[P — PP Touse = (1 — 0) [p® — PP Joune = I(u = 0)
[P = P = 3/ — 0) [p® = P = J(u = 0)
where . h
=" J 2 YY) Gy shuar)

Ry

© 1 —e
J(w) = 2p,e” f dy op,(») T
0

PO =0) = lim p®(u)
n—0

In conclusion, the equation of state of the one-component plasma, i.e.,
p% = p®(p, T), cannot be obtained using the Yukawa potential and passing
to the limit u — O after the thermodynamic limit, whereas the thermal pressure
can be obtained in this manner.

To understand better the origin of the factor 4, it may be useful to
rederive explicitly the general expressions (30); we shall thus repeat the
derivation without imposing the neutrality condition.

(i) Using the definition (34), we have

P -0 =0, |

L o2
dy ca(y) = (e7*E70 — 1)
L ¢

2 N af2 2
Pyt Va1 PBE
=P Y | dyeaen e By,

How=-nN J-an

p2 2N a2 o2
= e Z emr _[ dy CA()’)e_u(a/Z#y) + L (Mo — Np)
K k=0 —aj2 u
eye’

2N al2 ezp
=———e™ 2[ ) f”"“M dy ca(y) ch(uy) + —= (N, — N,)
u k=0 —aj2 U

Therefore, if N, — N, — 0 as N — o0, we obtain

pbel evua/l aj2
u t—e# J_

(k)

[P — p™ o = — dy ¢,(y) ch(uy)
2

al

which is identical with Eq. (35).
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(ii) On the other hand, Eq. (34) yields

P L P
PR = p‘“>=—£f dy en(y) — (€™M — e7HET)
u

—L

e? 1 —e HL
+ pp(Na — Nb)”(m— - 1)
H ulL

Therefore, if Ny, — N, — 0 as N — o0, we obtain
[P(m) “P(B)]b w=0
(iii) Finally, following the proof of Property 4(a), we have

—p =2 f dy eA) f dx XF(x = )
-L -L

k
Py —

Pp L ‘
=5 dy ca(y) dx (x — p)Hx — »)
2L |_ -1
al2 L
Z dy ea(y)y f dx F(x — y — na)
n=-N -L
a2 L
Z na dy ep() f dx F(x — y — na)
n=-N —a/2 - L

The contribution to Ap¥), coming from the first term is given by

1 al2 ©
2pb5 f dy cw(y)f dx xF(x) =
[4]

—aj2

The contribution of the second term is zero by invariance under
mversion.
Finally, the last term gives

al2 1
dy c () lim ———
Pb L,/z Yy coo(¥) Nm(2N+1)

x Z Z r)aJ~2 dx F[x — y — (n — r)a]

n=—Nr=—N aj2

a/2 o0 a2
=Py j dy co(y) 3 kj dx F(x — y — ka)

—aj2 k=1 —af2

al2 «© eua/Z _ e—;m/Z
__ 52 —n(k
=e’py dy e, (¥) ), ke HEt) —
—aj2 k=1 —u

_ e pb eﬂa/Z(l e_ﬂa)L Ja/z dyc (y) Ch(ﬂy)
u A= |, Y

which is the same expression as Eq. (35).
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Therefore
ep a2 2p,¢>
Apgix)lk P j o bz - Pp)
2psh(ua/2) J-gp K

This expression is well defined even for systems which are not neutral;
on the other hand, for systems which are not neutral, Apfik diverges as
the length of the system.

6.1.3. Pseudo-Coulomb Potential: ¢(x) = —e* In|x|. Using Eq.
(14) and the general results of Section 5, we have for neutral systems

Pw) = pkT — %ezp, [p™ _p(e)]bulk =0

[P(k) _p(e)]bulk = Zpb Z (=g ( )~(1)<2a7[ )

n#0

and

with (k) = ne?/|k|, k # 0.

Therefore
. 2 al
pye” (=" 2nny
A (k) _ _ —
Pbulk P J!_W () Z . (2n/a )n 08 4
and
(=1 2n a ny
o =— " Inl2 =
nzl Onjam cos| —-ny 5, In| 2 cos —
yields
2 a/2
Al = pb% j dy ¢.o(¥) In cos "~
—aj2 a

Moreover,

Cep, [© (v x
Bple == lim % | Ay [P 0) = pRON] | ln

Lo J-L

. e*p, [©

=~ lim Y dy [ () — PP()]
— —~L

LY

x [(L—y)In(L—-»)+L+p)In(L+y)—~2LIn L]

L
i o2 ylny y
= I}gro)oe O 1, dy 5pw(y)|: 2 + 2(1 2L>1n<l ZL)‘J

Therefore, assuming that {3 dy y|dp,(»)| < oo, we obtain
Aple =0
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On the other hand,

0
Apld = lim e*p, J dy [p21 +1)(») — pP(WM1In[(L — y)(L + )]
L

L-w

L
= lim &’p, f dy 5pw(y)[1n y+ ln<1 - L)]
L—w 0 2L

Aplor = e%p, f dy ép,(¥)Iny

0

Le.,

In conclusion,
P{B) = ppkT — %ezpb

p(m) zp(e)
P = pkT — 3€%p, + 3€%p,

oo}

al2 :
X j dy ¢ .(y) In[cos(ny/a)] + €*p, f dy op,(y)Iny

—a/2 Q

Let us note that for the state at 7= 0 given by

Coo(y):za(y_na)‘"pb, a=pb"1

we have
[P% = P Toun(T = 0) = 3’p, In 2> 0

ie.,

PE(T =0y =ep(—3 + 3In2) + Apl&); = €?p,(—0.158) + Ap),
which shows that in this case Ap®) is positive at T =0, while for

one-dimensional Coulomb interactions we obtained Ap&(T = 0) = 0.

Remark. The result p™ =p® extends the property established in
Section 4.1 for y > v + 1 to the case y = v.

6.2. v-Dimensional Systems

6.2.1. Coulomb Systems. For RE states with cubic symmetry and
cubic cells A,

2
m pee” 0, 1
[P(k) - P( )]bulk =0. [P(k) - pw)]bulk =-=

——— 1 dyc, 2
25 A . y e (WY
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Let us consider the special case 7 =0 and let us assume that the
state was obtained taking the limit V; —» oo by means of rectangular
parallelepipeds with sides of length 2N; + Da, j = 1,...,v (Ao = &”).

(i) v =2, simple cubic lattice, p,a® = 1. For the RE state ¢ (x) =
Y, 0(x — 1) — pp, we have

PUT=0)=~epf4,  Apfh(T =0) = (e?py/12)m > 0
pAT = 0) = 0 = py(—5 + 131 -+ A
1.€.,
ApE(T = 0) = —0.12e%p, = 0.05pNT =0) < 0

(ii) v = 3, simple cubic lattice, p,a®> = 1. For the RE state ¢ (x) =

Y, 0(x — ) — p,, we have
bulk(T 0) - 82 4/371:/6 > 0

Using the well-known inequality® p®(T) > —%e?pi?($n)"/2,

PRT =0)=0=p@ + Apily + Aplle > e2py°[5m — 16(Gm)' 2] + Apie
1e.,

P8 (T =0) < —0.04¢ i3 < 0

Dsurs

In fact, using a numerical estimate for p*(7 = 0),""® we have

pE (T = 0) ¥ —0.06ep;" =~ 0.07p'N(T = 0)

\Durf
(iii) v = 3, bec lattice, p,a® = 2. For the RE state
1 8
€ (%) =Zl:5(x— t)+§ Y o(x — b, — Z):l — D,
t i=1
we obtain
Apioy = €2py§m(2)**(1 = 3) < 0
and using a numerical estimate for p(T = 0),"'® we have

Ap® . = e piB[Em(2)*3 + 0.298(37) /%] = — 1.68p(T = 0)

T

which shows that Ap®«(T = 0) is positive and is quite important.

6.2.2. Two-Dimensional Pseudo-Coulomb Systems: ¢(x) =
e?/|x|, ¢(k) = 2me?/|k|. Equation (14) and the results of Section 5 give for
A, a parallelepiped {A;a™), A,a®}, aMa® = cos ¢,

P =pkT+u,  u=lim o [P = T =0
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2

pp2met (—=D™sing _
b4 Z Z 2n/A
j=1 n;#0 (2m/ j)| j'

0p€> l 2 T .
= 1 L vah
> sin ¢ — Al J dy ¢.(») ~=§1 A; n[cos(Aj ya >]

J

P(n,QY)

[P(k) - p(e)]bulk =

Let us consider the RE state on the triangular lattice at T = 0.
(1) Assuming the state was obtained taking the limit V', — oo by means of
the union of cells A, such that

A =4,=g¢ @ = 60° a3 =1
then
() =L =0 = pp AT =0) = pie* In 2 (3/3)12 > 0
i
and
©(T=0) =0 =1u + p3 I 2 G /3 + Ap¥
pbulk( ) U + Py e (2 ) -+ Dsurf
Using the numerical estimate for u,'*’ we obtain
P8 (T = 0) ~ 0.24e2p3/% =~ 0.25p(T = 0) >0

Dsurf

(ii) On the other hand, if the state was obtained by means of V; that
are the union of rectangular cells Ag,

A, =a, A2=\/§a, @ = 90°, pya>/3 =2

then

Co() =Y [0(x +2z—10) —d(x —z—1)]— p,» z=(f—1,\fa>

which yields

i 2n
Po(n; Q) = mcos( jzj> 3\/» COS( )

\/g 1/2 1+ﬂ
bulk(T 0) 3/262 111 2(—2—> (?\/—3—>

Thus

PYL(T = 0) ~ 0.36p3%¢>

Dsurf

which shows that the surface contribution is 30%, larger if the limit is reached
by means of rectangles rather than with parallelepipeds (although the total
pressure is shape independent, since it is zero).
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Table }

Ap™ = pim) — p©

Range of force Ap® = p*) — p®
=—(up, + 2uy,)

>v+1 Ap™ =0 1
Y ’ {avt =32 | axxe,00
y>v—1 Ap =0 2y Ja,
y=v-li w _ Lo !
Coulomb without ApEm = Apk), Apgh = 3 v dx xE,(x) + 51
Ay

quadrupole moment
! ) by
Apd, = P J dx xE(x)

v
With cubic symmetry ie, [p™ — p* ]y =0 "

=c f dx x%¢ . (x)
Ao

With spherical domains P —p® =0 _

7. SUMMARY

For a force with asymptotic behavior |F(x)| ~ |x|”7 and any periodic
RE state which is neutral and invariant under inversion, we have the results
shown in Table 1.

Conjectures:

L p™=p®ify>v—1

2. p*T) —>7.6 0.

3. Ap®),(T) is decreasing with increasing temperature.
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