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Several definitions of the "pressure" are introduced for one-component systems 
and shown to be nonequivalent in the presence of a rigid neutralizing background. 
Relations between these pressures are derived for finite and infinite systems; these 
relations depend on the asymptotic behavior of the force at infinity, with the 
Coulomb force at the borderline between different properties. It is argued that only 
one of those definitions is physically acceptable and its properties are discussed in 
relation to the asymptotic behavior of the force. It is seen in particular that a 
knowledge of the state of the infinite system is not sufficient to determine its 
thermodynamic properties. The results are illustrated by some typical examples. 
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1. I N T R O D U C T I O N  

T h e  W i g n e r  m o d e l  o f  matter,~l)  wh ich  cons is t s  o f  an  a s sembly  o f  p o i n t  charges  

i m b e d d e d  in a h o m o g e n e o u s  neu t r a l i z i ng  b a c k g r o u n d ,  is a w e l l - k n o w n  

e x a m p l e  o f  a c lass ical  o r  q u a n t u m  sys tem wi th  l o n g - r a n g e  forces.  

Here ,  we c o n s i d e r  the  classical  ve r s ion  o f  this m o d e l  as a ca r i ca tu re  o f  a 

m o r e  real is t ic  t w o - c o m p o n e n t  sys tem wi th  one  active a n d  one  passive 

c o m p o n e n t .  Th i s  m e a n s  tha t  we shall  focus  o u r  a t t e n t i o n  on  the  p rope r t i e s  o f  

the par t i c les  only ,  whi le  keep ing  the  b a c k g r o u n d  fixed. 

T h e  c u r r e n t  in te res t  f r o m  a theo re t i ca l  as well  as e x p e r i m e n t a l  p o i n t  o f  

v iew in v - d i m e n s i o n a l  sys tems  wi th  v a n d  (v + 1 ) -d imens iona l  C o u l o m b  

in t e r ac t i ons  2 sugges ts  t ha t  c o n s i d e r a t i o n  be g iven  to a r b i t r a r y  l o n g - r a n g e  

Laboratoire de Physique Th6orique, EcoIe Polytechnique F6d6rale de Lausanne, Lausanne, 
Switzerland. 

2 For example, for two-dimensional systems with three-dimensional Coulomb interaction see 
refs. 2~4. 
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forces and to the properties of the equation of state of the active component  as 
a function of the asymptotic behavior of  the force at infinity. We shall still call 
such a system a "one-component  plasma," although the force is not 
necessarily the Coulomb force. 

As a matter  of  comparison, Yukawa forces are also dealt with in what 
follows in order to exhibit the noncommutativi ty of  the infinite-volume and 
infinite-screening-length limits for a certain class of  observables. 

The systems considered here are subject to free boundary conditions and 
it has to be emphasized that none of the results reported below would have 
been obtained with periodic boundary conditions. 

In this paper, we study the equation Of state for such a one-component  
plasma; the first problem is to adopt a physically meaningful definition of the 
pressure. Indeed, using standard derivations for fluids (without a rigid 
background) one could introduce a priori several definitions for the pressure, 
which we shall refer to as the kinetic, virial, thermal, and mechanical 
pressures. It  is the thermal pressure (erroneously called virial pressure in the 
literature) which is usually considered in the study of  one-component  systems 
and which leads to well-known pathologies in the case of  Coulomb 
systems. (s-v) Although these definitions of  the pressure are equivalent for 
fluids, we shall see that they are no longer equivalent in the presence of a rigid 
background and free boundary conditions. The following properties which we 
shall derive indicate that the kinetic pressure, and not the thermal or 
mechanical pressure, is the physically meaningful definition. 

1. It is the pressure due to the active component  and does not take into 
account the external force necessary to keep the background rigid. 

2. It is identical with the virial pressure. 
3. It is nonnegative and is expected to tend to zero as the temperature 

tends to zero ; on the other hand, the thermal pressure becomes negative at low 
temperature in the case of  Coulomb systems. 

4. For  a system consisting of a finite number Nofpar t ic les  imbedded in a 
very large background, it is expected that the physical pressure will tend to 
zero as the size of  the background becomes ~nfinite (with N fixed). This is 
indeed the case for the kinetic pressure, while the thermal and mechanical 
pressures diverge. 

5. For non-Coulomb interactions, there exist states which are not locally 
neutral and the definition of the pressure should also make sense in those 
situations. Again this is the case only for the kinetic pressure. 

After a short description of the model in Section 2, we introduce in 
Section 3 the different definitions of  the pressure. The relations among these 
definitions are discussed in Section 4 for the case of  finite systems; in 
particular, we show in this section that the kinetic pressure coincides with the 
virial pressure; furthermore, for integrable potential, the mechanical and 
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thermal pressures coincide (but differ from the kinetic pressure); on the other 
hand, for Coulomb systems with spherical domains, the mechanical pressure 
coincides with the kinetic pressure (and differs from the thermal pressure); 
finally, we also give in this section a first motivation for adopting the kinetic 
pressure for the equation of state. 

In Section 5, we study the pressure in the thermodynamic limit; it is 
shown that the kinetic and mechanical pressures are not entirely defined by the 
state of  the infinite system, i.e., a knowledge of the state of  the infinite system is 
not sufficient to describe its thermodynamic properties. It  is seen that these 
pressures consists of  two contributions: a bulk contribution, which is defined 
by the state of the infinite system, 3 and a surface contribution, which is defined 
by the state of  a semiinfinite system. The analysis of  the bulk contribution to 
the kinetic pressure shows a very different behavior (factor �89 between the 
Coulomb force and forces which decrease faster at infinity; moreover, it is 
shown that for Coulomb systems with cubic symmetry, this contribution is 
proportional  to the "m om en t  of  inertia" of  the charge distribution of the unit 
cell. The analysis of the bulk contribution to the mechanical pressure shows 
again a different behavior between the Coulomb force and those with a faster 
decrease at infinity: it coincides with the thermal pressure if the force decreases 
faster than Coulomb, but coincides with the kinetic pressure for Coulomb 
systems without a quadrupole moment.  The discussion of the surface 
contribution is restricted to Coulomb systems with spherical symmetry and it 
is shown to be related to a surface "dipole moment ."  

A general investigation of the surface contribution is not given, but we 
discuss in Section 6 some of its properties for typical examples [v-dimensional 
Coulomb, (v + 1)-dimensional Coulomb and Yukawa interactions]. 

Finally, we summarize our results in the last section and give a series of  
conjectures. 

2. D E F I N I T I O N  OF T H E  S Y S T E M  

We consider a classical ~ one-component  p lasma"  (OCP), i.e., a system of 
identical particles in [~, with positive unit charge, imbedded in the uniform 
background of fixed negative charges with charge density - p b  (Pb ~> 0). 

The particle-particle and particle-bath interactions are described by 
means of a two-body potential qS(x~ - x2) such that the force 

F ( x )  = -Vq~(x) = - F ( - x )  

is C 1 and bounded for Pxt > R, locally integrable, and continuous away from 
the origin. 

z At least if the force decreases faster than Coulomb at infinity and for those states of Coulomb 
systems that do not have any quadrupole moment. 
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In particular the following interactions are of  special interest: 

Cou lomb  force: F(x) = eZ(x/Jxl v) 

pseudo-Cou lomb:  F(x) = e2(x/Ixl v+l) (away f rom the origin) 

Yukawa :  v = 1, q~(x) = # - l [ e x p ( - # l x t ) -  1] 

v = 2, ~b(x) = Ko(#lx]) + ln(�89 

v = 3, ~b(x) = ]x]-I  exp ( -# [x ] )  

The equilibrium states of  the finite system contained in the domain  A 
c ~ are described by correlat ion functions which are solutions o f  the 
B B G K Y  hierarchy:  

k T V , p ~ ) ( x i  ..... Xn):[EpA(Xl) + ~ F(Xl - Xj)] 
j = 2  

# 

• p~(Xl,..., x,) + .tA dy V(Xl - y) (i) 

x [p~+ 1)(x 1 ..... x. ,  y) -- p(2)(y)p(~)(xl ..... x.)] 

EpA(x ) = E + .jA dy [F(x - y) - F(- -y)]cA(y)  

where CA(y ) = p~A1)(y) -- Pb represents t h e "  charge density" at y and E : EpA(x 
= 0) represents the "effective electric field" at the origin. 

In other  words,  the equilibrium states o f  the O C P  are parametrized by A 
= domain,  T : temperature,  p = particle density, Pb = bath density, and E 
= electric field at the origin. 

I f A  is invariant under  inversion a round  the origin, i.e., A = - A, then the 
state is invariant  under  the t ransformat ion x -~ - x  if and only if E = 0. 

The regular equilibrium states (RE states) o f  the infinite system are 
parametrized by { V~}, T, p, Pb, and E, where { V~} is a sequence o f  domains  
converging to ~ ;  the RE states are defined by correlat ion function solutions 
o f  the B B G K Y  hierarchy(8): 

j = 2  

• p(")(xl ..... x.) + t dy F(xl - y) 

t i t  

d~ 

x [p("+ i)(x i ..... x.,  y) - p(1)(y)p(")(x a ..... x.)] 

Ep(x) = E + lim | dy [F(x - y) - F ( - y ) ] c ( y ) ,  
A~oO ~V^ 

e(y) = p(~)(y) - Pb 
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which are clustering: 

f lp~)(xl ..... x,)[ dx I '~, >/ < Vn 2 

It is known that the RE states are always lo ~ally neutral, i.e., 

lira - -  dx p(1)(x) = Pb (2) 

if the force decreases as Coulomb or slower at infinity and if the state is 
invariant under some translation group. Furthermore,  the state is invariant 
under the inversion x - ~  - x  only if E = 0. (8) 

We shall assume that the RE state parametrized by { V~} arises as the 
thermodynamic limit of  the finite system {A}, where {A} is a subsequence of 
{ V~.}. In the following, we consider only volume sequences { Vx} such that V a 
= - V  x and E = 0: i.e., we shall consider only states which are invariant 
under inversion around the origin. 

3. DEFIN IT ION OF THE " 'PRESSURE'" 
(FOR FINITE S Y S T E M S )  

In this section, we recall several standard definitions of  the pressure for 
OCP consisting of Nparticles contained in a finite domain A. These definitions 
are usually shown to be equivalent for fluids (i.e., Pb = 0), but this will not be 
the case for the OCP with Pb > O. 

3.1. Kinetic Pressure 

In the kinetic theory the _(k) pressure/~A is introduced as 

Xi Fwallt = ~ PA(Y)Y d a ( y ) =  vp<Ak)lAI I 

i = 1  ,J~A 

where PA(Y) da(y) represents the time average force exerted by the particles on 
the surface element da of the boundary c~A of A ([A[ is the volume of A). With 
Pa(Y) = kTp(A1)(Y) we are led to define the "kinetic pressure" as 

p(~) k T 1 
- v [~.[ J~ da(y) yp~)(y) (3) 

A 

Property 1. (a) For any convex domain A, the kinetic pressure p~) is 
nonnegative. 

(b) F o r E = 0 a n d A =  - A , p ~ ) = 0 a t  T = 0 .  
The proof  of  (a) follows immediately from Eq. (3). To establish part (b), 

and to compare different definitions of  the pressure, we make use of  the 
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BBGKY hierarchy to express p~) in terms of the one- and 
correlation functions. 

From Eq. (1) with  E = 0 and A = - A  we obtain 

kT  Vp~)(x) = fA dy F(x - y)Ep~)(x, y) - pbp(~)(x)] 

which yields 

k T fA dX XVp~)(x) = k T f~A d~(Y) YP~)(Y) - v'A'pk T 
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two-point 

=fAdXXfAdyF(x--Y)EP(~)(x ,y)--PbP~)(x)]  

where p = N/IN. 
Therefore 

llLL 
p~) = pk T + v ~ dx dy xF(x - y)Ep(~)(x, y) - pbp~)(x)] 

At T = 0 the RE states are defined by the solutions of the corresponding 
BBGKY hierarchy and the first equation yields 

0 = fAdy F(x - y)[p~)(x, y) - pbp2~(x)] 

which implies p~) = 0. 

Remarks.  For Coulomb systems in one and three dimensions, Monte 
Carlo computer simulations indicate that a stronger result, namely 
limr~ 0 p~) = 0, should also be valid. (9'1~ However, it should be recalled that 
the limit T ~  0 must be taken after the thermodynamic limit A ~ m. 

Using the truncated function 

= y )  - 

w e  o b t a i n  

'iLL p~) = pk T + - dx dy xF(x - y)Ep~)r(x, y) + C A (X)c A (y) ] 

+ - dx dy xF(x - y)cA(y ) (4) vN 
This last expression will be useful in the following to compare the 

different definitions of the pressure. 
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3.2. Virial  Pressure 

In the virial equation of state the pressure is introduced as 

p , . j = 2 ~ t ~  -E~I" 1 1 ~ 
v + ;N, I x,F, 

where F/represents the force on the ith particle due to the other particles and 
the bath (not the wall). 

We shall thus define the "virial pressure" as 

1 1 N 
pk o~ = pkT + ; I N  ,_Z_. <xy,> (5) 

which yields 

1 1 #~~ I(,Z xy(x,-x,))-(Zx,  fAay~(x, - y)p~)] 
i.e., 11s163 p~ = okr + 7 lal 4x dy xF(x - y)[pf~(x, y) - pbp~(x)] 

In conclusion, we have 
p~) =p~)  (6) 

3.3. Thermal  Pressure (Canonical  Ensemble) 

The thermal pressure has been introduced using the idea that the 0 C P  is 
the limiting case of a two-component system. Since for the two-component 
system the pressure is defined by 

3F 
PA = - - ~  (T, V, N, Ub) 

it seems reasonable to introduce a "thermal pressure" for the 0 C P  as 

p~) = kT(c3/~V) in Q(T, V, N, Nb) 

where Q(T, V, N, Nb) is the partition function associated with 

~ p2 
HA = 2m -]- UA(Xl ..... XN) 

i=1 

uA(xl " ' "  xu) = 2 i*j ~ qS(xi - x j) - ~ ~.. dy gb(xi - y) 

+ 1  

and Pb = Nb/V. 
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Using the s tandard  di latat ion method ,  

~? l n Q ( T ,  V,N, Nb)- 1 1 1 (OQ(~)~ 

1 
fA dx~ '" dxN expE--/3u~(x~ ..... 

Q(()  = N. ~ 
XN)] 

' IA u~(xl ..... xN) = 5 ~ qSE~(xi -- xj)] - V-  ,~- dy ~bE~(xi - y)] 
iCj  

1 +~(N~)2fAdXfAdY~E~("--Y)n 
we have 

k T ~ l n  Q(T, V, N, Nb) = pkT- ~ N ~ - / { =  1 / 

) = pkT + ~ i ~ F ( x i  - -  X j )  

1Nb <~ fACly(x~ -- Y)F(x~ --Y) > v V 

+ ~ 5 dx dy (x - y)F(x - y) 

Therefore  

i.e., 

1 p(~ pb21 i ~-V JA dx fAdy xF(x  - y) 

+ vlv Pb<~ fA dy yF(xi -- Y) > 

P~)=P(~) Pb V fA dx fA d y x F ( x  -- y)cA(y) (7) 

Using Eq. (4), we thus have 

I';A L p~) = pk T + - dx dy x F ( x  - y)Ep~,~(x, y)  + CA(X)CA(y)] vl~ 
(8) 
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3.4. Mechanical Pressure (Canonical Ensemble) 

For a fluid parametrized by the parameters (T, V, N, Pb) the mechanical 
pressure or partial pressure due to the particles--is introduced as 

P~a")-- 8F(T' V ' N ' p b ) = p 2 ~ I 1  1 ~V P f (r ,  p, N, Pb) 

We then define the "mechanical pressure" as 

pk ") = kT(O/OV) In Q(T, V, N, Po) 

Using again the dilatation method, we have 

1 1 p~Am)= pkT + v ~ ( ~ x i F i ) +  Pb 1 ~-~ fAdX fAdy Vx[Xr y)]cA(Y) 
which yields [assuming q~(x) = O(1/Ix[~), ct < v as x--~ O] 

1 1 ( ~ . ) p b e f A  ; p k m ' = p k T + ~  x,Fi + v N dycx(y) Ada(x) x~)(x--Y) (9) 

This definition of the pressure for OCP was first introduced in Ref. 11 and 
called "mechanical"  since in the grand canonical ensemble 

p(A'~(Z, T, Pb) = (8/81A[) In QA(Z, T, Pb) 
while 

p(A ~ = [ln QA(Z, T, pb)]/iAI 

4. RELATIONS A M O N G  THE DIFFERENT PRESSURES 

4.1. Arbitrary Interactions 

(i) We have already obtained the relation (7), 

pbl fA fA P~) = ptOA) + T ~ dx dy xF(x -- y)cA(y ) (10) 

Using Eq. (1), we thus have for E = 0 and A = - A  

~- ~ dx xEp~(x) (11) 

(ii) From Eqs. (9), (5), and (6) 

Pk~'=P(k)+Pb 1 fA f~ v ~ dy CA(y) A d•(x) X4(X -- y) (12) 
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(iii) It follows from the equation preceding Eq. (9), together with Eq. (10) 

P(A m) = p(OA) + Pb ~ dx dy (o(x - y)cA(y ) = p(~) -- ~ (Upb + 2Ubb) (13) 

i.e., p(m) = p(O) and 

lim p~)(x)l 0 
N Ip  (x) - = 

lim pkml = lim p~) 
A~N~ A~Nv 

1 
lim ~ (Upb + 2Ubb) = 0 

A~IRv 

Proof. Parts (a) and (b) have been already established. 

Pr -- P~) = ~ dx dy c)(x - y)[co~(y) + p ~ ( y )  - p2~(y)] 

but O(x - y)co~(y) e 5Yl(dx), and 4)(x - y)c~(y)  periodic in (x, y) implies (8t 

1 fA fA 1 ;A f~ A--Rvlim Pb ~ dx dy dp(x - y)co~(y) = Pb Ao o dy ~ dx O(x - y)coo(y) 

= 0 (by neutrality) 

(where A o denotes a "unit cell" and {A} is a sequence of volumes defined as the 
union of unit cells zaAo, a ~ Y)  and 

Pb f A d X f A d y , 4 ) ( x _ y ) l l P ~ , ( y ) _ p ~ ) ( y ) [  IA[ 

~< pbllq~ll~l i ~  dy [p~)(y) - p2)(y)l--, 0 by assumption 

To conclude this discussion, we consider the special case 

F(x) = e2(x/[xV + 1) 

then 

P r o p e r t y  2. (a) p~) = p~). 
(b) For a fluid, i.e., Pb = 0, we have p ~  = p~l = P~A" = pr ~" 
(C) If the potential q~ is 5 ~ and if PA converges to a RE state locally 

neutral and invariant under some translation subgroup Y- of ~* in such a 
manner that 
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T h e n  

a n d  

XF(X) : e267,, + (~2 --  1)qS(x) 

I';AiA p(Oa) pk T ~- -- dx dy 1 2 = ~-[-e 6),,1 -~ (~ -- 1)qS(x - y ) ]  
viAl 

• [p(A2)r(x, y) + CA(X)CA(y)] 

=PkT+lle  {fA IrA J} IA ~ ~ 62,1 dx dy p(~,)T(X, y) ~- dx CA(X ) 

+(~_ l ) l  I 

w h i c h  y ie lds  

p(Oa) = pk T + 7 - - 1  1 6 [ pe2 eZ ~ N 
v IAI (uA5 + ~,~L- ~ + ~ [AI(p - PO2j' P - IAI 

(14) 

E x p r e s s i o n  (14) is e r r o n e o u s l y  ca l led  the  " v i r i a l  p r e s s u r e "  in the  l i t e ra tu re .  

4.2. Coulomb Systems 

Property 3. F o r  Coulomb systems with  spherical domain A ( rad ius  R) 

(a) P~) - P ~  - Pbe2 fa e2 (0~ R2 2R ~ dy cA(y)[y[ 2 + Pb(P - Pb) ~ ~-  

(b) p~) - p(A ") = -- pbc~(R)(U - Ub) 

where  N b =Pb[A] ,  (01 = 2, (02 = 2~, a n d  (03 = 4m 

C o r o l l a r y .  F o r  Neutral Coulomb systems wi th  spherical domain 

pbe2 fA p(~) _ p(A0 ) _ 1 (UPb + 2Ubb} _ dy r 2, p~) - p(A ") = 0 
]A[ 2R ~ 

Proof. (a) W e  have  

~A d~(x) x r  - y)  

= v f dx - y) - f dx xV(x - y) 
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But for Cou lomb systems 

xF(x) = [e26v,2 + (v - 2)~b(x)] 

Therefore 

,f 
Since 

[A~I .fa e22 Y2R v v 2-e 2 dx 4~(x - y )  - + 2 r + ~v,2 

if A is a sphere of  radius R and y E A, we obtain 

f & r ( x )  x~b(x - y) -- IAlv~b(R) 
A 

IA[ = oovRV/v; col = 2, 6o 2 = 2•, 693 -- 41r 

and thus it follows from Eq. (11) that 

p(~) - p~A") = _ pbc~(R)(N - Nb) 

(b) It follows from Eqs. (13) and (15) that for spherical domains 

f Pk m) -- P(~ = Pb dy CA(y) -- 2R ~ + ~ ~b(R) + ~- 6~, 2 

pbe2 dy ca(y)ly[ 2 + pb(N -- Nb) (9(R) ~ + ~ 0~,2 
2 W  

(15) 

(16) 

(17) 

which concludes the proof. 
F rom Eq. (14), we have 

where 

p~) = pk T + 
v - 2  1 

v IAI 
F_~ ~ ~ ] 

( b l A )  = blpp -~ Upb -~" Ubb , Ubb = �89 fA dX fA dY 4~(X -- Y) 

(18) 
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Using proper ty  3(b) with Eqs. (13) and (18), we obtain for a spherical 
domain A with radius R 4 

1 
v = 1 p(~) = p k T  - 2R (upp + 2upb) - Npb(o(R ) 

v = 2 p(~) = p k T -  pe2 + p2eZIA[ e2pPbIAI 1 
4 ~ 2 Iml (uPb~ - SPb(a(R) 

1 
v = 3 p(~) = p k T  + 3 ~  (upp - 2u,b > - Npb4(R ) 

Combining  these expressions with the expression for p~) given by 
Proper ty  3(a), we have 

pbe2C%fAdyP(AX)(y)y2--V [ ~ 1  UPb -- 2 V 2 Nub ~(R) + (5~,,2 

and 

p(~) = p k r  - pbe2vR ~ ~i dy p(iX)(y)y 2 

v - 2 (upp) eZp 
+ + 5~ 2 (N - 1) 

v IAI " 4 -  

N 
= - -  

P IAI 

(19) 

4.3. Conclusions 

1. Let F(x) = e2(x/Ixl '+ 1); for ~ = 1 (e.g., Cou lomb  in two dimensions or 
p seudo-Cou lomb in one-dimension),  we have 

pe 2 e 2 
p(~) = pk T - ~vv + I A I ~  (p - pb) 2 (20) 

which shows that  the thermalpressure becomes negative at low temperature for 
neutral systems. 

This same proper ty  also holds for Cou l omb  systems in one and three 
dimensions;  for example, in one dimension 

1 e 2 
p(~) = p k T  - ~ (Un} < p k T  - ~ [1 - 3(N - Nb) 23 

This remark shows that  the thermal pressure cannot  represent the "p ressu re"  
exerted by the particles on the surface o f  the container,  which is a positive 
quant i ty ;  on the other  hand,  the kinetic pressure has this positivity property. 

4 The expression for v = 3 was derived and studied by computer simulation in Ref. 10. 
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2. Let us consider a spherical Coulomb system; in the limit A -~ oo with 
N and Pb fixed it is expected that t he"  pressure" exerted by the particles on the 
wall should tend to zero. 

Now, it follows from Eq. (19) that p~) will tend to zero in this limit [if 
(1/[Al)(upp) tends to zero for 5 v = 3]; furthermore, this result implies that 

(1/LA[) ~A dy p~)(y)hy[ 2 also tends to zero. 
On the other hand, by Property 3(b), p(A m) will tend to + oo if v = 1, 2 and 

to - o o  i fv  = 3. 
Finally, using Property 3(a), we see that p(A ~ will behave as 

pb e2 0~ R2 p -- 2pb 
2 v v + 2  

and will tend to + oo. 
This shows that the kinetic pressure is the only pressure that exhibit the 

expected property to tend to zero in the limit A --~ oo, with N, Pb fixed. 
3. The result that the different definitions of  the pressure are not 

equivalent is directly related to the fact that we have a fixed background Pb 
> 0; this result will also hold if the fixed background is not uniform. On the 
other hand, as we shall see for two-component  systems (without background), 
all definitions are equivalent. 

The mathematical origin of the result goes back to the fact that the 
integrand in the definition of p~), 

F(x - y)[p~)(x, y) -- pbp(A1)(X)] 

is not symmetric in (x, y). 
4. The consequence of the above result is that one should be careful in the 

definition of the "pressure."  In fact, the pressure one wants to consider in the 
equation o f  state o f  the OCP is the pressure due to the positive particles with the 
background considered as strictly passive. 

It appears that the thermal pressure does not have the properties required 
by the stability conditions of  thermodynamics and is thus not the right 
quantity. As we have seen, both the thermal and the mechanical pressures do 
not have the expected property to tend to zero in the limit A ~ oo with N and 
Pb fixed. We shall see in Section 6 tha tp  (k) = limA ~ ~ p~) is also well defined for 
nonneutral systems (with Yukawa interactions), which is not the case o fp  ("). 
Finally, it is expected tha tp  (k) will tend to zero as Ttends to zero (as it should), 
while this is not the case o f p  ~~ 

In conclusion, the kinetic pressure is the only pressure that has all the 
required properties; it should be stressed that it is defined in terms of  the force 
and not in terms o f  the potential. 

5 F o r  v = 1 it  is poss ib l e  to  see t h a t  this  c o n d i t i o n  is sat isf ied.  
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5. The virial theorem, which is usually written for Coulomb systems as 

2(E~") + (v - 2)(UA) + 6~,2['" ] = v[Alp 

should thus be written in terms of the physical pressure p~) [Eqs. (12), (13)] as 

2(E~") + (v - 2)(UA) + 3~,2['"] 

= viAl p~) - ~ dx  [q~(x) - (Po] + T ]A] A 

(21) 

where ~o(x) - ~o o = ~A dy gp(x -- y )cA(y  ). 
Let us note that it is possible to compare Eq. (21) with the equation 

derived in Ref. 12 for quantum systems at T = 0. Indeed, at T = 0, p~) = 0 
and thus for v = 3 

+ (UA) = --3pb ~ dxEcp(x)-q~o] + pb ~ d~ xBp(x )  - ~po] 2(E~ n) 
dA de A 

which is identical with the starting point, Eq. (6) of Ref. 12. 
6. Let us consider a "two-component s y s t e m "  (E = 0, Pb = 0). From the 

BBGKY equation (s) 

= fir f d y F ( x  - y ) E p ~ ( x , y )  - p~2)_(x,y)], ty = +_1 Vp~(x) 
jR 

with 
p(x) = p + (x) + p_ (x) 

we obtain 

Vp(x) =/~ t~  dy F(x - y)(p~)+ + p~)_ - p(2+)_ _ p(2_)+ ) (x  ' y)  

p~) = p k  T + k T- 1 f dx  xVp(x) 
v IAI JA 

"LL = pk  T + - dx  dy xF(x - y) 

• (pT)+ + p(~_)_ - p?)_ - p~)+)(x ,  y )  

On the other hand, the thermal pressure is given by 



420 Ph. Choquard, P. Favre, and Ch. Gruber 

(xi, Yk denote ,  respectively,  posi t ive and  negat ive particles).  We thus have 

= = 

and  we not ice  tha t  the in tegrand  in the defini t ion o f  p~) 

~2) p~_ _ p~_ F(x,  y)(p + + + - p(2_)+ )(x, y) 

is symmetr ic  in (x, y). 

5. PRESSURE IN THE T H E R M O D Y N A M I C  L IMIT  

In this section, we s tudy the defini t ions o f  the pressure  in the t he rmody-  
namic  l imit  A -~ R v and we assume tha t  the state ob ta ined  in this l imit  is a RE 
state with respect to fl, {A}, invariant under some (discrete) translation group J'. 

To simplify the discussion,  we take  E = 0 and  we cons ider  only  sequences 
{A} invar ian t  under  invers ion a r o u n d  x = O, i.e., the state ob ta ined  in the l imit  
is &variant under the transformation x --+ - x ;  fur thermore ,  we shall consider  
only  sequences of  domains A which are unions of"  cells" %A0, a ~ J'~ with A o a 
" c e l l "  centered a r o u n d  the origin 6 ; the indices r, s, t will represent  the center  
o f  these cells. F inal ly ,  we shall restrict  our  d iscuss ion to systems which are 
neutral, 7 so tha t  

fAdy CA(y) = O, fA dy yCA(y) = 0  

fA dy c~176 = O' fA dy yc~176 = o 

and  in some cases we shall  in t roduce  the add i t iona l  a s sumpt ion  that  the state 
has no quadrupole moment, i.e., 

l a d y  6~ - vy~y~)coo(y) (lyl 2 0 
Q 

As we shall now see, the analyt ic  form of  the pressure  will depend  
s t rongly  on the a sympto t i c  behav ior  o f  the force at  infinity. We  shall  then 
in t roduce  the fol lowing condi t ions  on the force:  

l im ~7F(22) = d(2) =/= 0 with V >-- v - 1 
J , ~ o o  

IxF + ~lcSiF~(x)l = 0(1)  

Ixl~+2l~i~.F~(x)[ = 0(1)  as [ x l - '  oo 

6 At this stage A o can be any "cell"; it is not necessarily the parallelepiped centered on the 
translation vectors and does not necessarily have a volume equal to p/- ~. 

7 For nonneutral systems see Section 4 and the examples in Section 6. 
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The first two condit ions were in t roduced in Ref. 8 to  discuss equil ibrium 
propert ies  of  systems wit'h long-range forces. We recall that  for 7 = v - 1 (e.g., 
C o u l o m b  systems) the RE are always locally neutral .  

The  "excess pressure" with respect to p(O), i.e., 

Ap(k) = p(k) _ p(O) = lim [p~) - p(A ~ 
A--, ~ 

Ap(,.i = p(,.) _ p(O) = lim [p~A "~ -- p~)] 
A ~ '  

can be seen as the result of  two contr ibut ions:  first a "bulk contribution" given 
by 

Ap(k) = l imPb 1 fA fA bulk - -  dx dy xF(x  - y)co~(y) 
A-,R~ v IA[ 

(22) 

Apbutk = A~wlim Pb ~ (  dx dy O(x - y)c~(y) 

where co~(y) = p~)(y) - Pb is the charge density in the infinite system; and a 
"surface contribution" given by 

Ap(k) l imPb 1 fA fA surf = A ~ v  T I ~  dx + xF (x  - y ) [ p ~ ( y )  - p2~(y)] 

(23) 

AP m, lim surf = Pb dx dy c~(x - y)[p~)(y) - p2)(y)]  
A--* ~ ] ~  

We note  that  the " b u l k  con t r ibu t ion"  can be obta ined f rom the 
knowledge o f  the state of  the infinite system where the limit A ~ ~ is taken in 
the same manner as the limit defining the state; fur thermore ,  this contr ibut ion 
is zero if the state is locally neutral  and invar iant  under  translat ion,  i.e., APb,1 k 
appears as an "order parameter" for the crystalline state. 

On the other  hand,  the " sur face  con t r i bu t ion"  will depend on the 
limiting process PA --* P~ and cannot  be obta ined  f rom the knowledge of  the 
state of  the infinite system. We thus arrive at the conclusion that  for a system 
with fixed background  a knowledge of  the state of  the infinite system is not 
sufficient to characterize its thermodynamic properties. 

Let us note  that  it is expected that  ~'Uu~kA'(k) increases as the tempera ture  
decreases, while ca/JsurfAn(k) decreases', moreover ,  it is expected that  p(k) tends to 
zero as T - *  0. 

Finally, we remark  that  for C o u l o m b  systems Ap (k) is strictly positive at 
low temperatures .  
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5.1. One-Dimensional  Coulomb Systems (Radius R) 

To gain some insight into the problem, it is useful to discuss first the 
Coulomb system in one dimension. 

5.1.1.  Bulk  C o n t r i b u t i o n .  By definition of the bulk contribution 
(22) and using Property 3, we have 

(m f R  dr coo(r)]r] 2 Ap(b~lk = APbulk = APbulk, APbul k = -- lim f lbez 
R~oo ~ -  R 

Assuming the state has some periodic structure, i.e., coo(r) = c~(r  + a), 
and is obtained taking the limit R ~ oo as R = (N + �89 with N integer, we 
have 

p b e 2 ~ t a / 2  
Apbul k = -- lim ~ R -  dr c~(r)lr + ka[ 2 

N~oo k=--N ,J--a~2 

Using neutrality and invariance under inversion, we obtain 

1 t a/2 
A P b u l  k = - -  pbe 2 - dr coo (r)r 2 

a . j  _ a / 2  

Remarks. 
/>0. 

(24) 

(a) It is expected that ~o/2 dr coo(r)r 2 is negative, i.e., APbul k 

(b) It is important  to take the limiting procedure in the same way for the 
limit PA ~ P~ and the limit in the integral; otherwise Apbul k will depend on the 
limiting procedure. 

For example, the state of  the infinite system could have been obtained 
taking the limit R---, ~ as R = Na, which would have given c~'(r) = coo(r 
- a/2) and 

Ap{,ulk = -- lim pbe- S" dr c~'(r)(r + ka) 2 

Using neutrality and invariance under inversion, then 

dr coo'(r) = 0, dr coo'(r)r = dr coo(r)(r + a/2) = 0 
0 ,d -a/2  

which yields 

1 fo' Ap{,ulk = ---Pbe 2 -- dr coo'(r)r 2 and APbul k = Apbul k 
a , 

On the other hand, if we had taken expression (24), we would have obtained 

I f  "/2 f a/2 
A/~bulk = - - p b e  2 - d r  coo'(r)r  2 = Apbul k -- 2a dr coo(r)r # Apu~l k 

a .)--a/2 ' dO 
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(c) Note  that  for v-dimensional  systems with spherical symmet ry  

Apb.l k = -- lim pbe2 fo R R-~ ~ ~ dr c~(r)r ~+ 

5.1 .2 .  S u r f a c e  C o n t r i b u t i o n .  To evaluate  the surface contr ibut ion,  
we have to consider  first a finite system. Since v-dimensional  C o u l o m b  systems 
with spherical domains  can be treated in the same manner ,  we shall directly 
consider  this more  general case, 

APsurf = A~lim ~-- ]AT dy [p~)(y)  - p2)(y)]  dx xF(x  - y) 

But for  a Coulomb system 

fA dx xF(x  - Y) = ;A dX (x - y)F(x - y) + Y fA dx F(x - y) 

l 

v l l d x r  e2[AlOv,2 + 

+ - 2  d x r  d x F ( x - y )  
L 

which yields for  A a sphere o f  radius R 

A d X  x F ( x  - y )  = e2[A[6~,2 + 0 ( R )  - le2co~ly]2 

Using the neutrality condition 

dr (R - r)V- ~[p~)(R - r) - p ~ ) ( R  - r)] = 0 

we have 

Ap~u~ r = - lim P b O)~ e 2  ( dy [p2)(y)  (y)]lyl 2 
R ~  2v IAI 3A 

_ Pb 1 ~"~ 
2 ~ lim R~ Jo drr~+~[p2~(r)- p~(r)] 

R~oo 

_ f ib  1 ~R 
2 ~ e 2  lim - -  .]o dr (R - r) ~+ l[p~)(R - r) - p~)(R - r)] 

R ~ o o  R v 

fo' = pbo),e 2 lim dr r 1 - 1 - [p~)(R - r) - p~X~)(R - r)] 
R ~ c ~  
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I f  the t h e r m o d y n a m i c  l imit  is reached in such a m a n n e r  tha t  

[pA(r) -- p~(r)[ < ~o(R -- r) with dr r~p(r) < ~o 
0 

then by d o m i n a t e d  convergence 

APsur f = e2pbO~ dr r 6pw(r) 

where bpw(r) is the difference between the densi ty  for  the semiinfinite system 
and the infinite system (from the boundary ) ,  s 

5 .1 .3 .  Concluding Remarks. (a) This simple example  has shown 
tha t  Apb~ k is ent i rely defined by the state of  the infinite system and is 
p r o p o r t i o n a l  to the " m o m e n t  o f  i ne r t i a "  o f  the neut ra l  d ipole  free charge 
densi ty  o f  the unit  cell. On the o ther  hand,  to ob t a in  Aps~f it is necessary to 
know the densi ty  funct ion o f  the semiinfinite system and the con t r ibu t ion  
appea r s  as the "dipole moment"  of  6pw(r). 

(b) Let  us cons ider  the one-d imens iona l  system at T = O, i.e., 

Then 

co~(r) = ~ 6(r - na) - Pb, a = p [  1 

1 ta/2 pb2e2a~__~ e2 Apbul k = p f e  2 -  drr  2 =  = - - > 0  
a j - a /2  12 

Apsur f = 0, p(k)(T = O) = p(O) + e2/12 = 0 

We thus see tha t  p(k) at T = 0 is identically zero, while p(O) = _e2 /12  is 
negative at  T = 0. (5) 

5.2. Bulk Contr ibut ion (Arbi trary Interact ions)  

5.2.1. Bulk Contr ibut ions to Ap (k) We have 

@~k' =limPb 1 f f bulk ~-  ~ dx dy xF(x  - y)c~(y)  
x~oo IV.~l v z v~ 

= lim fPb lt~.r ]~0] dx dy xF(x  - y  + l -  r)coo(y) 
Noo~L v , o o 

+ v U ,,~ t ~ dx  dy F (x  - y + t - r ) e~ (y )  
o o 

8 For v = 1 tl~e result of Ref. 13 gives an explicit expression for ~p~. 
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I n t r o d u c i n g  the fields 

e(x) = f~ dy F(x - y)c~(y) 
o 

o ~ o dx o dy V(x + u - y)~o(y) 

which  have  a s t r a igh t fo rward  physical  in te rpre ta t ion ,  we ob ta in  

Ap(b~fk= l i m [ P b  1 1 fA 1 1 ~ t ' ~ ( t - - r ) l  
N~o~k v N ~  ]Ao] d x x e ( x + t - r ) + v - N  

o t , r  

Since 

e=(x) = f~o 

(25) 

(26) 

( 
Eo(x ) = lim | dy [F(x  - y) - F ( - y ) ] c o o ( y )  

5~oO ~VA 

9 We have assumed that 

lim 1 Z( t  - r )~( t  - r) = ~ u ~ ( u ) ;  
N ,# u 

we know this is true for ~, > v - 1 and for Coulomb systems without quadrupole moment. 
lO Vx can be taken as any union of unit cells Ao. 

where  1 o 

@ eoo(y)[r,(x) - y VF,(x) + (1 - O~)y ' /a ,a f~(x  + Oxy)] 

Ox~[O, 1] 

we have  e~(x) = O(1/[x] ~ + 2)for neutral systems, invariant under inversion (i.e., 
no  dipole  m o m e n t ) ,  and  thus 

?r N l i m  - -  ~ ikoTo~ ~ dx xe(x + t - r) = [A~o[ o dx xe(x + u) 

F u r t h e r m o r e ,  the invar iance  u n d e r  invers ion a r o u n d  the origin implies 

. ~ ( u )  = . ~ ( -  u) 

In  conc lus ion ,  for  neutral systems, invariant under inversion, 9 

A.~k) _ Pb 1 dx xEp(x) + ~vv ~ u . ~ ( u )  (27) 
~Vbu~k v [Ao[ o u 



426 Ph, C h o q u a r d ,  P. Favre, and Ch. Gruber  

O n  the  o the r  h a n d ,  we can  also wri te  

APbulk ---- lira IVy[ ) 

+ v N ~ I A ~  dyco~(y) y d x F ( x - y + t - r )  
0 0 

~- ~ , ~ dx dy F(x  - y + t - r)c~(y) 
0 0 

W r i t i n g  the first t e rm as 

~- ~ ~- f~ dy co~(y) f~ d x ( x - y + t - r ) F ( x - y + t - r )  
N t,r Ao o o 

we see tha t  for neutral systems, invariant under inversion (i.e., no  d ipo le  
m o m e n t )  the first two t e rms  are o f  the o rder  Jt - rJ-(~+ 1) or  It - r l - ~ + 2 )  for  a 

C o u l o m b  sys tem w i t h o u t  a q u a d r u p o l e  m o m e n t ;  i ndeed  

(a) f dy oody) f dx (x - y + u)F(x - y + u) 
0 O 

= f~o dy eody) f~o dx [(x + u)F(x + u) - y V(xF)(x + u) 

+ (1 -- O~,)yiy J ~#3j(xF)(x + u + O~y)] 

(b) Coulomb 

a n d  

x F  = [eZ6~,2 + (v - 2)r  

fA dy c~(y)Y~ fA dx F~,(X - y + u) 
0 o 

= f•o dy c~(y)Y~ fA o dx [F~'(x + u) - Yi ~?iF~'(x + u) 

+ (1 - O~)yiff ~3,~jF~,(x + u + Oxy)] 
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Therefore, if 7 > (v - 1) (neutral, no dipole moment) or Coulomb (7 = v 
- 1) without quadrupole moment, 

Ap(k) Pb 1 
bulk - -  dy c~(y) 

v I~Xo[ dAo 

xtlimfvdX[(x-y)F(x-y)-xF(x)+yV(xF)(x)] } 

Pb 1 fA + v ~ dy coo(Y)Y 
o 

x ~lim fv d x [ F ( x - y ) - F ( x ) ] } - ~ v ~ U ~ ( u  :. (28) 

To state our next property, we need the following definition. 

Definition.'Two sequences of volumes {Vx} and {Vz'} are said 
to be "equivalent"  if IV~A Va'l =o(IVac~ V/), ~where V:& Va'= 
(V~ w Va')\(Va m V/) is the symmetric difference. 

It was shown in Ref. 8 that if a state (of the infinite system) is a RE state 
with respect to { V~}, then it is also a RE state with respect to { V/} whenever 
{Va} and {V/} are equivalent (for 7 >/v - 1). 

Property 4. (a) We have 

Ap~b~k __ Pb 1 dx xEo(x ) + Z u ~ ( u )  (29) 
7 lad ~ .  

(b) Furthermore, if the sequence { V~} is equivalent to the dilatation of 
some fixed volume Vo, i.e., Vz ~ {2x; x ~ Vo}, then, for 7 > v - l, 

(k) 1 Pb 1 
A p b u l k  - -  2 v lad JA dx xE o (30) 

o 

for Coulomb systems without quadrupole moment (with respect to Ao), 

Ap(k) l pb I fA dX XE:(x) Pbe2 C~ l fA ~ 
b u l k - 2  v lad o 4 v A o dy Coo(Y)lYl 2 (31) 

Remark. The overall "macroscopic shape" defined by means of  Vo 
does not enter into the expressions for Aptbku)~k, Eqs. (30) and (31); however, 

(k) Apbulk will depend on the "microscopic shape" as defined by A o. 
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Proof. (a) Already established. 
(b) For  y > v - 1, we have (8) 

dx [ f ( x  - y) - F(x)]  = lim 0 
) ` ~ o o  ~V)~ 

[ dx [(x - y)F(x - y) - xF(x)  + y V(xF)(x)] = lim 0 

Indeed,  let ~(x) = xF(x). Then  

f r d x  y) ~b(x) y VO(x)] y [ -  [V~(x)  - V~b(x + O~y)] [O(x + dx 

Ox~[O, 1] 
But 

fv~.dx [(O~)(x)-(8~tP)(x + Oxy)] ~ ;~ ,v~  dXlS~tp(x)' 

where Vy = ryV)` = {x + y;  x e V)`}. 
Therefore ,  repeat ing the a rgument  of  Ref. 8, we find that  the difference 

will tend to zero if c3~ = o(1/Ix] ~- ~) when Ix] -*  oe. By the condi t ion on the 
force, namely  

F~(x) = O(1/IxlO, d~F~(x) = O(1/Ix[ "~+ ~) 

this condi t ion will be satisfied for 7 > v - 1. 
I t  thus follows f rom Eqn. (28) that  for  y > v - 1 (neutral,  no dipole) 

Ap(k) 21VZ b u l k  : - -  B ~ ( U )  

which concludes the p r o o f  because of  (a). 
For  C o u l o m b  systems, we have 

xF = [e 2 3~, 2 + (v - 2)qS(x)] 

Therefore  Eq. (28) yields (Cou lomb system wi thout  quadrupole  momen t )  

v - 2 1 ( '  
Ap~bkdlk = Pb v IA d J ~  dy coo(y) 

[" dx [ ~ ( x  - y)  - q~(x) + y vq~(x)] • lira 

v IAol dy coo(y)y lim dx [ F ( x  - y)  - F(x) ]  
O ).-+co 

1 

2v y' . .~ (u)  u 
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Using the result of Ref. 8, we know that 

lim fv dX [F/(x- y ) -  F~(x)]= lim f~ dx [F/ (x -  y ) -F/ (x)J  

= -- e2CijY j 

where 

429 

( .  

C/j = J~ da/(S) 
Vo lY? 

On the other hand 

lira 

We thus have 

i f  v~ = ,~Vo 

fv dX [~b(x  - S )  - ~b(x) + y V q ~ ( x ) ]  = -�89 
A 

(k) pbe 2 l fv 1 
APb.lk -- 2 IAol dy c~(y)(ylCly} - 2v u ~ ( u )  

o 

which together with Eq. (29) yields for Coulomb systems without quadrupole 
moment (s) 

Ap(k) -- pb l f dx  xEp(x)  Pbe2 Ogv l f~ 
b u l k  2v [A0[ 0 4 v [Ao[ dy c~(y)lyf 2 

o 

We shall now derive an explicit expression for the excess kinetic pressure, 

i.e., for ~A ~ dx xEp(x), in terms of the Fourier transform of  the one-point 
correlation function. For  this derivation, we shall consider that the unit cell 
A o is a parallelepiped based on the translation vectors. 

Property 5. Let Ao be a parallelepiped with basis vectors A/a t~ 
ta(1) I = 1. 

For any locally neutral RE state invariant under the translation 9roup 
defined by {Aia(i)}, 

1 dx xEp(x) = - ~ ( - 1)'~(njQd))fioo(njQ ~ (32) 
IAol o j = ,  . o 

where/}(k) = ~ dx ~(x)e  -ikx iS the Fourier transform of the potential 

I fA dx p~)(x)e -ikx 
= o 

and Q~) denotes the vectors of the reciprocal lattice. 
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If 

ProoL (i) Fourier  t ransform 

O(k) = ~ dx ~o(x)e-~k~ = ~-[~0], k ~ reciprocal lattice 
o 

q~(x) = ~. e~k~(k), 1 ~ dx qffx)~_(x) = Y~ (o(k) C(k) 
k IAo[ .JAo k 

qffx) = ; ~  dy G(x - y ) h ( y ) ,  h periodic over Ao 

1 f6 (o(k = O) = [A~o] dx (p(x), (o(k # O) = G(k)f~(k) 
o 

G(k) = f ~  dx e-ik~G(x) 

(ii) We have 11 

[X=] = ~ d x  e - ik~x~  

o 

1 f dx xEo(x ) = ~ ~ ~ [ x ~ ] ~ E E ~ ] ,  
IAol d~o , k 

Int roducing 

x = uja tj), [a(J)[ = t, 

then 

~ Notice that for k = O, 

uj e [ - A j~2, A J2 ]  

k = njQ t/), //j ~ 

2 ~  

kx  = ~. X7 n~uj 
3 - - 3  

x ~ = e(-)x = ~ (e(~)aU))uj = T~JHj 
J 

k ~ = e~lk = ~ (Q(i)e<=))ni = ni zi~ 
i 

~[G](k  = O) = ~ dx G(x) 
o 

is well defined since E~(x) is bounded for a periodic RE state. 
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~ [ x  ~] = y - ~  T ~j dul "'" duv ujexp  - 
L a 0 j  �9 d - A~/2 .) -A J2 

( -  1)o~ 
= Z r~J( l - ~.~.o) [ [  ~~ 

j -- i(27r/Aj)nj i~j 

IAol o dx xEp(x) = " T~J,j~o ~ i(2rc/Aj)nj F=(nJQ~J))fi~176176 

But  
V = -VqS, F=(k) = - ike~')4(k ) 

F=(njQ r = _ in jQ<S)e(=} d~( k ) = _ in jz~= c~( k ) 
Therefore  

tAol dx xEo(x ) = - 2 2 ( -  1)"~f)(nJQ~)fico(njQ~ 
o j = l  n j r  

P r o p e r t y  6. '" C o u l o m b  s y s t e m s . ' "  (a) I f  the basis vectors of  the parallel- 
epiped A o are or thogonal ,  then for any Ao-invariant RE states o f  a Coulomb 
system 

1 f dxxEAx)- eZ~ 1 f~ fAol o 2 JAol dy ]y]Zcoc(y ) 
0 

(b) For  any R E  state with cubic symmetry 

~k) Pb l fa pbe2 Co~ l fA /XPbulk- V IA d dxxEAx)- 2 v [Aol delyl2c~(y) (33) 
O o 

P r o o f .  We have 

~(k)  = e 2 coy coy 
]k~ '  q~(nJQ~/)) = ez [(2n/Aj)n~] 2 

Therefore  

1 [ ~ 1 
IAol J~ dxxEp(x)=-e2c~ ~ ~" ( - 1 ) " J  fi~(njQ tj)) 

o j = 1 , ~  o [(27r/Aj)nj] 2 

= -eZco~  ~ ~ ( _ l ) . j  1 1 
j=  t .3~0 [ ( 2 7 c / A j ) n j ]  2 IAol 

1} exp i - -  njx~ co~(x) 

e2co ~ 1 _.IAodx = - -  

x ~ { ~ ,  ( -  1)"Jexp[i(2~z/Aj)njxi]~ ""  
. o ~ -;coAx) 
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( - -  1)"J exp[i(27z/Aj)njxj] Aj 2 + xj 2 
[(27z/Aj)nj] 2 - 24 2 nj~O 

which concludes the p r o o f  of  (a) because of  the neutral i ty proper ty .  
The last pa r t  o f  the p roper ty  follows then f rom Eq. (31). 

5 .2 .2 .  B u l k  C o n t r i b u t i o n  t o  Ap (m). We have 

Ap(m) =lim Pb fv fv 2 ). 

; ~ N  ,,rlAol o o 

Using neutral i ty and invariance under  inversion, we can replace 

f dxf dyc~(y)4~(x-y+t-r)o o 
by 

f A & ]  dy - + u ) - + ( x + u ) +  Vr  c ~ ( y ) [ ~ b ( x  Y Y 
o ~Ao 

which behaves  as [U[ -(7+1) or as lu[ -iv+2) for a C o u l o m b  system without  
quadrupo le  moment .  

We thus have for 7 > v -  1 and for  a C o u l o m b  system without  
quadrupole  m o m e n t  

Ap(m) 1 fA {~i~rn~ Iv } bulk = Pb ]A~o] dy co(y) dx [4~(x - y) - q~(x) + y V~b(x)] 
0 A 

and therefore the results o f  Section 5.2.1 yield the following: 

P r o p e r t y  7. (a) I f  y > v - 1, then [-p(m) __ p(0)]bul  k : 0. 
(b) (i) For  C o u l o m b  forces wi thout  quadrupo le  m o m e n t  

Ap(m) __ pbe 2 COy 1 fA 
bulk 2 V [Ao[ dy c~(y)lyl 2 o 

i . e . ,  

[p(k) -- p(m)]bulk : --~V ~u U~'~ (U) 

(ii) Fo r  C o u l o m b  forces with cubic symmet ry  

[p~k) _ p(rO)]bul k : 0 
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5.2.3. Concluding Remarks. 

l. For 7 > v - l and for Coulomb systems without quadrupole moment  
with respect to A o it follows fi'om the results of  Sections 5.2.1 and 5.2.2 that 

1 Pb 1 ~ 1 [p(m) 
[p(k) _ p(0)]bul k _ 2 V lad ,oa dx xEp(x) + ~ - p(0)]bul k 

o 

[p(m} __ p(0)]bul k __ Pb 1 ~ + _1 
~- lad & dx xEp(x) ~ u~-(u) 

o V u 

[p(k)--p(m)]bulk : - - 2 ~  u ~ U ~ ( b t )  

Moreover, if 7 > v - 1, then 

[p(m) _ p(0)]bul k = 0, Z u ~ ( u )  - Po .fA dx xEp(x )  
. J A o l  _ o  

but for Coulomb systems with cubic symmetry 

[p(k) _ p(m)]bul k =. 0, 2 U ~  (U) = 0 
u 

2. One should notice the factor �89 of difference between A,(k) for ~XFbulk 

y > v 1 and for (k~ - -  APbul k for Coulomb systems with cubic symmetry. 
(k) 3. For Coulomb systems without quadrupole m o m e n t  A P b u l  k is pro- 

portional to the moment  of  inertia of  the charge density in the cell A o if 
and only if y,, u ~ ( u )  = 0. 

4. Properties 4 and 7 show that for ~ > v - 1 and for Coulomb systems 
without quadrupole moment  with respect to Ao, the bulk contribution to 
p(k) and plm) does not depend on the "macroscopic  shape"  as defined by 
V o (i.e., V;~ can be taken as any union of cells Ao), but will depend on the 
"microscopic shape"  as defined by Ao. 

On the other hand, it is possible to show (14~ that for Coulomb systems 
with nonvanishing quadrupole moment  A,,(k~ and A,,(m) will also ~--~ bu lk  ~ / " b u l k  

depend on the "macroscopic  shape." 
5. Property 7(a) extends Property 2, p(m)=p(o) ,  from 7 > v + 1 to 

7 > v -- 1, but the result is now restricted to the bulk contribution. 
6. Property 7(b) extends Property 3, p(m) = p(k), from spherical domains 

to domains with cubic symmetry, but is also restricted to the bulk 
contribution. 

7. For  Coulomb forces and general domains, there exists a repre- 
sentation of the potential by means of a double Fourier series (14) which yields 
the result 

Ap(m) __ Pb e2 1 fa 
b u l k  2 ~o~ ~ dy coo(y)(y[F-ty) 

o 
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where ~- is a symmetrical tensor of unit trace depending on the sequence { V~}. 
In the cubic case D: = (1/coOC. 

6. APPLICATIONS 

In this section, we illustrate the previous derivation by some explicit 
examples. We shall see in particular that it is no t  possible to obtain the 
equation of  state of the one-component plasma using the Yukawa potential 
and passing to the limit p--* 0. We shall also see that the definition of p(k) 
still makes sense for nonneutral systems, which is not true of p(m). 

--  ( k )  These examples show that ~VbulkA"(k) and ap .... can have either sign 
and it appears that ~vs,rfA'(k) is minimum for cells A 0 defined by the vectors 
of the translation symmetry group. 

6.1. O n e - D i m e n s i o n a l  Systems ~2 

We assume that the state of the infinite system is periodic with period 
a,13 and is obtained by means of a sequence of domains V~ = [ - L ,  L] 
with 2L = (N + 1)a. In particular the states of the finite and infinite systems 
will be invariant under inversion. 

For a one-dimensional system, Eq. (13) yields 

; f p~Arn) __ p~) = Pb dy  CA(y ) dx [~b(x - y) - ~b(x)] 
L L 

i.e., 

+ Pb(P -- Pb) d x  r  

; --  dy  cA(y ) d x  [O(L  + x)  - $ ( L  - x)] p(Am) p(A0' = 2 L  L 

+ Pb(P -- Pb) d x  (a(x) 
L 

f P~) -- P V  ) = -- Pb d y  CA(y)(~(L -- y )  
L 

(expressions which are valid without assuming neutrality). 

12 For  a more  detailed discussion of  one-dimensional  systems, see Ref. 15. 
13 In particular it could be invariant under  translation. 

(34) 
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C o u l o m b  P o t e n t i a l :  q~(x) = - e 2 [ x l .  As shown in Sections 4.2 

p t m )  __ p ( k )  = 0 

1 ~./2 
[p(k) _ p~0)]bul k = _pbe2 _ dy c~o(y)y 2 

a d-a~2 

[ p ( k )  _ p ( 0 ) ] s u r  f = 2poe 2 dy y 6Pw(Y) 

In particular at T = 0, ~FbulkAn(k) > 0 and ~t's,rrAn(k) = 0. 

6.1.2.  g u k a w a  Potent ia l :  q~(x) = (e2/p)(e -"lxl-  1). Using the 
general result of  Section 5, we have for neutral systems 

,~/27t \~(1)/2~ \ 

where for the Yukawa potential 

c~(k) = 2eZ/(k 2 + 1/2) 

Therefore 

A p ( k )  - -  

But 

pb e2 I a/2 e i(2n/a)ny 
dy co(y)  ~, ( -  1)" [(2rc/a)n] 2 + 1/2 

a ,d -a/2 n~O 

e i(z~/a)"y a ch(1/y) 1 

~, ( -  1)" [(2rc/a)n] 2 + I /2  - -  21/sh(a1//2) 1/2 n:~O 

which yields, using the neutrality condition, 

lobe2 ~a/2 
- - a y  c ~ ( y )  ch(1/y) (35) [p(k) p(0)]buL k 21/sh(1/a/2) ,y -,/2 

On the other hand p(m) = p(O) implies 

t 
~L e 2 

(1) _ [p(k) _ p(O)]s,r f = - - f i b  l i r a  dy (P(-L,+L) p~))(y) - -  ( e  - u l L - y l  - -  1) 
L~oo --L I l 

pbe 2 dy 6p~(y) 1 - e-"r = (36) 
1/ 

pbe z 1 f L  
[p~m) _ p(O)]~f = lim #2 L dy (plI_)L,+L~ -- p~))(y) 

L-~ ~ L 

x (e-"L _ e -"(L- y)) = 0 
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Taking the limit #--~ O, we obtain 

Yukawa  I t - ,  0 

[.p(m) - -  p(O)]bulk = 0 

[p(m) _ p(0)]sur f = 0 

[p(~)  - p(Oqb.~ k = �89 - ~  0)  

[-p(k) __ p(O)]sur f = �89  ~ O) 

where 

Coulomb 

[p(m) _ p(O)]bul k = [(it = 0) 

[p(m) __ p(O)]sur f = ,](/2 ---- O) 

[p(k) _ p(0)]b,1 k = I(tt = 0) 

[p(k) _ p(0)]sur f = j ( i t  = O) 

pbe2 ~'~/2 ch Ity 
i(it) -- | dy c~)(y) 

a j -~/2 (it/a) sh(ita/2) 

fo o Y(i t )  = 2pbe  2 dy 6p~(y)  1 - e -  "y 
It 

p(O)(it = 0) = lira p(O)(#) 
tt~O 

In conclusion, the equation o f  state o f  the one-component  p lasma,  i.e., 
p(k) = p(k)(p, T), cannot  be obtained using the Yukawa  potential  and passing 
to the limit p -~ 0 after the thermodynamic  limit, whereas the thermal pressure 
can be obtained in this manner.  

To unders tand better the origin o f  the factor  �89 it may  be useful to 
rederive explicitly the general expressions (30); we shall thus repeat the 
derivation without  imposing the neutrali ty  condition. 

(i) Using the definition (34), we have 

P~) -- Pk m) = --Pb dy cA(y ) - -  (e -u(L-y) - l) 
L 

- dy cA(y)e -u[(N-n+ 1/2)a-y] + Pb e2 ( N ,  - Nb) 
It n = - N  J-a~2 It 

2N ~a/2 2 
- pbe2 ~ e -uk" dy cA(y)e -u(a/2 -y) + e-pb (NA -- Nb) 

P k=o ,d -a/2 P 

ebe 2 [ 2 ~  e_Uka] fa/2 dy CA(y ) c h ( p y )  + e2pb- ( N  A --  Nb) -- e - ua/ 2 
[2 Lk = 0 J ~ a/2 P 

Therefore,  if N A - N b -~ 0 as N--~ ~ ,  we obtain 

pbe 2 e -  Ua/2 ~a/2 
[p(~)  p(m)]bul k = | dy co~(y) ch(py) 

tt 1 - e -u" j_,r  

which is identical with Eq. (35). 
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(ii) On the other hand, Eq. (34) yields 

Pb dy CA(y) - -  (e -~'L -- e .(L-y)) 

+ pb(NA -- Nb) pL  

Therefore, if N A - N b ~ 0 as N ~ 0% we obtain 

[ p ( m )  __ p ( 0 ) ] b u l  k = 0 

(iii) Finally, following the proof of Property 4(a), we have 

p~) _ p~) Pb ~ f_'  = dy CA(Y) dx xF(x  - y)  

= - -  dy CA(y) dx (x -- y )F(x  - y) 
2L L L 

; + ~ s  dy CA(y)y dx F(x  - y - ha) 
n = - N  J - a ~ 2  L 

+ ~ s  Z na dy ch(y) dx F(x  - y - na) 
n= - N ,) - a/2 L 

(k) The contribution to Apbu~ k coming from the first term is given by 

2pb - dy c o ( y  ) dx  xF(x)  2Pbe2 
a j - a / 2  = ~ 2  ( P  - P b )  

The contribution of the second term is zero 
inversion. 

Finally, the last term gives 

a/2 1 

Pb dy c~(y)  l i ra  
tJ --a/2 N ~ o~ (2N + 1)a 

N N (n -- r)a ~./2 
x Z • ~ d x g [ x - y - ( n - r ) a ]  

n = - N  r = - N  ,d-a~2 

= Pb dy coo(y) k dx  F(x  - y - ka) 
J--a~2 k = l  J - a ~ 2  

= e2pb dy c~(y)  ke  -"(k"+y) e"~/2 - e-U~J2 

J - a / 2  k = l  - - / A  

e2pb eU~/2(l e-U ~) e T M  i "/2 . . . .  dy co~(y) ch(py) 
p (1 - -  e - U a )  2 j _ a / 2  

which is the same expression as Eq. (35). 

by invariance under 
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Therefore 

e2pb f al2 2pbe 2 
A , a ( k )  - | dy coo(y) ch(/,y) + (P - Pb) ~*'bulk 2p sh(ya/2) j --a/2 

This expression is well defined even for systems which are not neutral; 
on the other hand, for systems which are not neutral, kp~,mutk diverges as 
the length of  the system. 

6,1.3. P s e u d o - C o u l o m b  Potent ia l :  q~(x)=-e 2 lnlx[. Using Eq. 
(14) and the general results of Section 5, we have for neutral systems 

p(O) = p k T -  le2p, [ p ( m )  _ _  p(0)~bul  k = O 

and 

[-p(k) _ p (0 ) ]bu lk  - -  

with q~(k) - rce2/]k[, k ~ O. 
Therefore 

and 

yields 

Ap(k) _ 
b u l k  

pbe2 rc ta/2 eo~(y) ~= 1 (--1)" 2rmy 
a 2 'J_a/2 dy = (2zt/a)~ 2 cos - - a  

( - 1 ) "  c o s ( ~  ny)  = _ 2~ in(2 cos ~ )  
. = l (2rt/a)n 

e 2 ia/2 ny 
kP~ulk = Pb ~ dy coo(Y) In cos - -  

,) - a / 2  a 

Moreover, 

,. e2pb f~ fr  L + x  *-aFsur fA"(m) = - -  l l m  - ~ -  dy [p{l_)L,+L ) (y) - p~)(y)] dx In - - L  - x 
L- -+m L 0 

= - L+o~lim e2pb~- fOE dy [pl[)L,+L)(y) -- P~)(y)] 

X [(L -- y) ln(L -- y) + (L + y) ln(L + y) - 2L In L] 

- lim dybpw(y) ~ -  2 ( 1 - 2 ~ ) 1 n ( 1  

Therefore, assuming that 5o dy ytapw(y)l < oo, we obtain 

Ap(" = 0 s u r f  
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On the o ther  hand ,  

Ap~k) = lim e2pb f ~  dy [pll_)L,+L)(y) -- p~!(y) ]  l n [ (L  - y) (L  + y)]  s u r f  
L ~ o o  L 

i.e., 

Ap(k) f0 ~ surf = e2Pb dy 6pw(y) In y 

In conclus ion ,  

p~O) = pbk T _ �89 po 

p ( m )  = p(O) 

p(k) = pbkT  _ �89 + �89 

(a/2 fO ~ x dy coo(Y) ln[cos(~y/a)] + e2pb dy 6pw(y) In y 
,] - a/ 2 

Let us note  tha t  for  the state at T = 0 given by  

coo(y) = ~ 6(y - na) - Pb, a = p ;1  
n 

we have 

i.e., 

[p{k) _ p{O)]bulk( T = O) = �89 In 2 > O 

pCk)(T = 0) = e2pb(--�89 + �89 2) + a,~k) = e2pb(_0.158)  + Ao(k) 
~ F s u r f  :Usu r f  

which shows tha t  in this case A p ~ f  is posi t ive  at  T =  0, while for  
�9 ~kL T one-d imens iona l  C o u l o m b  in terac t ions  we ob ta ined  zXpsur,( = 0) = 0. 

R e m a r k : T h e  result  p~m)=p~O) extends the p r o p e r t y  es tabl ished in 
Sect ion 4. J for  y > v + 1 to the case y = v. 

6.2. v-Dimensional  Systems 

6.2.1. Coulomb Systems. For RE states with cubic symmetry and 
cubic cells A o 

[-p{k) _ p ( m ) ] b u l k  = 0 .  [ p ( k )  __ p ( 0 ) ] b u l  k = pbe 2 CO~ 1 fa 
2 V ]Aol dycoo(y)ly] 2 

o 
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Let  us c o n s i d e r  the  spec ia l  case  T = 0 a n d  let  us a s s u m e  tha t  the  
s ta te  was  o b t a i n e d  t a k i n g  the  l imi t  Vx-~  ov b y  m e a n s  o f  r e c t a n g u l a r  
p a r a l l e l e p i p e d s  wi th  s ides  o f  l eng th  (2Nj  + 1)a, j = 1,..., v (IAo] = a3). 

(i) v = 2, s imple  cub ic  la t t ice ,  p b a 2 =  1. F o r  the  R E  s ta te  co~(x)= 

y~, 6 (x  - t) - Pb, we have  

p(~ = O) = - e Z p f f 4 ,  Ap(bk~)lk(T = 0) = (eZpf f l2 f i z  > 0 

p(k)(T 0) 0 = eapb(--�88 + IA~7C) + A.(k) = LaP'surf 

i.e., 

A p ~ f ( T  = 0) = - 0 . 1 2 e Z p b  = O.05p(~ = O) < 0 

(ii) v = 3, s imple  cub ic  la t t ice ,  pba 3 = 1. F o r  the  R E  s ta te  coo(x) = 

y ,  6 (x  - t) - Pb, we have  

(k) T @b~lk( = O) = e2p~/3~/6 > 0 

3 e 2 , ~ 4 / 3 ( 4 ~ 1 / 2  U s i n g  the w e l l - k n o w n  in eq u a l i t y  (6) p(~ > - ~  ~,b tx J , 

- -  ( k )  o2n4/31-1~ --  ( k )  = An(k) + /~P . . . .  > - -  1~(34--T01/2 ] -~- /~P . . . .  p(k)(T = 0) = 0 p(O) .+.  ~ F b u l k  t .  eb L 6  'c" 

i.e., 

(k) _ --O.04e2 p 4/3 < O A P s , r f ( T -  0) < 

In  fact ,  u s ing  a n u m e r i c a l  e s t i m a t e  fo r  p~~ = 0), ~16) we have  

Ap(k) T -O.06e2p~/3  ~ O.07p(~ = O) . . . .  ( = 0 )  

(iii) v = 3, bcc  la t t ice ,  pba 3 = 2. F o r  the  R E  s ta te  

coax) = ~ 6(x  - t) + 
T 

we o b t a i n  

Ap(bk21k = e2 p~/3 ~z(2)2/3(1 -- 3) < 0 

a n d  us ing  a n u m e r i c a l  e s t i m a t e  for  p(~ = 0), (16) we have  

Ap(k) = e2p,~/311A~(2)2/3 + 0.298(~_~)1/2] = _ 1.68p(0)(T = 0) surf 

�9 (k)o T which  shows  t h a t  /Xpsurr( = 0) is pos i t i ve  a n d  is qu i t e  i m p o r t a n t .  

6.2.2. Two-D imens iona l  Pseudo-Coulomb Systems: ~ b ( x ) =  

eZ/[x[, d~(k) = 21re2/[k[. E q u a t i o n  (14) a n d  the resul t s  o f  Sec t ion  5 give for  
A o a p a r a l l e l e p i p e d  {A1a ~ A2a(2)}, a( l)a (2) = cos  ~p, 

p(O) = p k T  + u, u = l im (UA~, [ ' p ( m )  __ p ( 0 ) ] b u l  k = O 
A - ~  IA[ 
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pb2~e z ~ ~ ( - 1 )  "jsingo 
[ p ( k )  _ p ( 0 ) ] b u l k  __ 4 j= l  , j*o (2n/As)inst fi~(nsQ(S) ) 

: ~2-- go [A~o[ dy c~(y) A t in cos ya v) 
o j = l  

Let us consider  the RE state on the triangular lattice at T = 0. 
(i) Assuming  the state was obta ined  taking the limit Vz --~ ~ by means  of  

the union o f  cells Ao such that  

A 1 = A 2 = q, go = 60 ~ �89 = 1 

c ~ ( x )  : : y 6 ( x  - t ) - p ~ ,  
t 

then 

and 

(k) Apb~ik(T = 0) p~/2e2 In 2 ( � 89  > 0 

: A n (  k ) p(bkdik(T = O) 0 = �89 + p3/2e2 In 2 (�89 '/2 + ~vsu,f 

Using the numerical  est imate for  u, (3) we obta in  

A p ( k )  T 0.24e2p 3/2 ~ 0.25p(~ 0)) 0 . . . .  ( = o )  ~ = 

(ii) On the other  hand,  if  the state was obta ined by means  of  Va that  
are the union of  rectangular  cells Ao, 

A 1 -- a, Z~ 2 = x /5  a, 

then 

g o = 9 0  ~ p b a 2 ~ =  2 

c ~ ( x )  = Y~ [ 6 ( x  + z - t )  - 6 ( x  - z - t ) ]  - pb ,  
t 

which yields 

Thus  

fi| (s)) = ~ cos ~..j njz sl a3x/3 cos ~ nj 

(?)1,2( 
(k) p3/2e2 ' 1  Apb~k(T -= 0) = In 2 ~ , ~  

Ap~ku~f(T = O) ~ 0.36p312e2 

which shows that  the surface contribution is 30% larger if the limit is reached 
by means of  rectangles rather than with parallelepipeds (a l though the total 
pressure is shape independent ,  since it is zero). 
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Table I 
i 

~.p(m) = p(m) __ p(O) 
Range of force Ap(k) = plk) _ p(O) 

= -(upb + 2ubb) 

y > v +  1 Ap (m)=0 f A  (k) lob f~ 
> v - 1 An(m) -- 0 ~. lApbulk = 2 V dx xep(x) 

~Pbu lk -- o 

..(k) = dx xEo(x) + ~ I 
quadrupoleC~176 withOUtmoment t ~V bulkAn(m) ---- ~P'bulkA"(k) AD (k)~k" bulk __ [2b ~-It" Ao 

.b.lk -- T ) Ao dx xEAx) 
With cubic symmetry i.e., [p(m) _ p(k)]b,l k = 0 

= c fA dx x2c~(x) 
o 

With spherical domains plm) -- p(k) = 0 

7. S U M M A R Y  

For  a force with asymptot ic  behavior  IF(x)l ~ Ixi - ;  and any periodic 
RE  state which is neutral and invariant under  inversion, we have the results 
shown in Table I. 

Conjectures:  
1. p(m) = p(O) if 7 > v - 1. 

2. p(k)(T)  - ' r ~ 0  0. 
3. Ap~bk~)lk(T) is decreasing with increasing temperature.  
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